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Abstract

Directed embryonic stem (ES) cell differentiation is a potentially powerful approach for generating a renewable source of cells for

regenerative medicine. Typical in vitro ES cell differentiation protocols involve the formation of ES cell aggregate intermediates called

embryoid bodies (EBs). Recently, we demonstrated the use of poly(ethylene glycol) (PEG) microwells as templates for directing the

formation of these aggregates, offering control over parameters such as size, shape, and homogeneity. Despite these promising results,

the previously developed technology was limited as it was difficult to reproducibly obtain cultures of homogeneous EBs with high

efficiency and retrievability. In this study, we improve the platform by optimizing a number of features: material composition of the

microwells, cell seeding procedures, and aggregate retrieval methods. Adopting these modifications, we demonstrate an improved degree

of homogeneity of the resulting aggregate populations and establish a robust protocol for eliciting high EB formation efficiencies. The

optimized microwell array system is a potentially versatile tool for ES cell differentiation studies and high-throughput stem cell

experimentation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Embryonic stem (ES) cells hold therapeutic potential as
renewable source of cells in tissue engineering and
regenerative medicine [1,2]. ES cells are characterized by
the capacity to differentiate into specific tissue lineages in
response to temporally and spatially regulated extrinsic
and intrinsic signals [1,3,4]. Recent work has interrogated
protocols for directing ES cell fate in vitro [5–12]. Typical
ES cell differentiation protocols involve the formation of
embryoid bodies (EBs)—structures which recapitulate
features of early embryonic development and give rise to

a wide spectrum of cell types [13–16]. EBs are usually
formed using the hanging drop method [16,17] or in
suspension culture [15]. The hanging drop method permits
some control over EB size, but these cultures are cum-
bersome and not suitable for scale-up. Although suspen-
sion culture has advantages in that it is easily scalable and
requires little expertise, the resulting EBs are heterogeneous
in size and shape [18,19].
It is known that ES cell differentiation is affected by

microenvironmental stimuli that directly or indirectly
depend on EB size [4,18,20]. Such environmental stimuli
influences cell–cell, cell–extracellular matrix (ECM), and
cell–soluble factor interactions as well as other physico-
chemical factors including temperature, pH, and oxygen
availability. Since these parameters can be functions of EB
size, cell populations obtained from suspension culture EBs
can vary dramatically—even when they were cultured
under identical conditions [21]. To uniformly direct EB
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differentiation, microenvironmental stimuli must be pre-
cisely controlled by homogenizing EB parameters such as
size and shape.

To overcome the challenges associated with traditional
EB culture techniques, a variety of approaches have been
developed. For example, stirred vessel bioreactors have
been used to improve EB homogeneity [12,19,22]. Also,
encapsulation of EBs in agarose capsules and the use of
E-cadherin-blocking antibodies have been employed to
reduce agglomeration of EBs in stirred cultures [23].
Rotary shakers have also been used to provide constant
circular motion to suspension cultures, resulting in
improved EB homogeneity [24,25]. However, ES cell
proliferation, viability, and aggregation are sensitive to
hydrodynamic forces and shear stresses [26].

An ideal system for directing ES cell differentiation
would provide uniform microenvironments to EBs while
also being amenable to large-scale culture. Such a system
should allow for in situ analysis, but EBs should also be
accessible for further experimentation. Ideally, such a
platform would also be simple, inexpensive, and applicable
in standard biological laboratories.

We have previously developed a microfabricated plat-
form of poly(ethylene glycol) (PEG) microwell arrays that
showed advantages over suspension culture in controlling
size, shape and homogeneity of EB populations [27]. This
system can be integrated into microfluidic platforms to
enable high-throughput experimentation [28]. However,
our initial approach had drawbacks in that cells often
adhered to the microwells and cell seeding and EB retrieval
yields were suboptimal.

In this study, we develop an optimized microwell
platform. We enhance the cell-repellent properties of the
microwell substrate and establish robust seeding proce-
dures and aggregate retrieval methods. We also use
computational simulations to guide selection of microwell
geometry. Using our array system, we are able to grow
large populations of cell aggregates that are both homo-
genous and easily retrievable.

2. Materials and methods

2.1. Master fabrication

Photomasks were designed using the layout editor software CleWin

Version 2.8 (WieWeb Software, Hengelo, Netherlands) and printed on

MylarTM clear films at Fineline Imaging, Inc. (Colorado Springs, CO)

with a high plot resolution of 20,230 dpi. Patterns of microwells with 50,

75, 100, 150 and 175mm diameters were created on silicon wafers. The

wafers were cleaned and spin coated with hexamethyldisilizane (Arch

Chemical Industries, Norwalk, CT) adhesion promotor before the

permanent epoxy negative photoresist SU-8 2025 (MicroChem Corp.,

Newton, MA) was deposited. Spin coating was performed at 4000 rpm,

yielding the desired film thickness of 20 mm. Wafer were softbaked at 65 1C

for 3min, followed by a second softbaking at 95 1C for 6min. For

crosslinking of the photoresist, the coated wafers were exposed to UV light

of 350–400nm for 90 s through a photomask. Subsequently, wafers were

post-exposure baked at 65 1C for 1min and then at 97 1C for 6min. The

photoresist-patterned silicon master was developed using SU-8 developer,

rinsed with isopropyl alcohol for 10 s, and air dried with pressurized

nitrogen. The pattern and depth of the microwells was analyzed using a

Dektak surface profiler (Veeco Instruments, Santa Barbara, CA).

2.2. PDMS-stamp fabrication

Poly(dimethylsiloxane) (PDMS) molds were fabricated by curing a 10:1

mixture of silicone elastomer base solution and curing agent Sylgard 184

(Dow Corning Corporation, Midland, MI) on a silicon master patterned

with SU-8 photoresist. The PDMS elastomer solution was degassed for

15min in a vacuum chamber and cured at 70 1C for 2 h before the PDMS

molds were peeled from the silicon masters. The generated PDMS replicas

had patterns corresponding to the silicon master with protruding columns

and were subsequently used for molding of PEG microwells.

2.3. Microwell fabrication

Non-adhesive microwells were fabricated using micromolding on UV-

photocrosslinkable polyethylene glycol diacrylate and methacrylate

(PEG-DA and PEG-MA) (Sigma-Aldrich Co., St. Louis, MO and

Monomer-Polymer & Dajac Labs, Inc., Feasterville, PA) of different

average molecular weights (MWs) (258, 330, 575 and 1000Da) mixed in a

1% (w/w) ratio of the photoinitiator 2-hydroxy-2-methyl propiophenone

(Sigma-Aldrich Co., St. Louis, MO). Glass substrates were treated with

3-(trimethoxysilyl) propylmethacrylate (TMSPMA) (Sigma-Aldrich Co.,

St. Louis, MO) for 5min and baked at 70 1C for 1 h. A patterned PDMS

stamp was placed on an evenly distributed film of PEG monomer solution

on a glass support and then photocrosslinked by exposure to light of

350–500nm wavelength for 16 s at an intensity of 100mW/cm2 using the

OmniCures Series 2000 curing station (EXFO, Mississauga, Canada).

After polymerization, the PDMS stamp was peeled from the substrate.

The stability of microwells micromolded on TMSPMA-treated and

untreated glass slides was assessed by incubating microarrays in

Dulbecco’s phosphate-buffered saline (PBS) and analyzing the integrity

of the arrays over time. In all cases, 1% photoinitiator was added and

dilutions were made in PBS. Experiments performed to assess array

stability were conducted in triplicates.

2.4. Murine ES cell culture

Pluripotent murine ES cells (R1 strain) [29] were manipulated under

tissue culture hoods and maintained in a humidified incubator at 37 1C

with a 5% CO2 atmosphere. All tissue culture components were purchased

from Gibco-Invitrogen Corporation (Carslbad, CA) unless otherwise

indicated. Culture medium for maintenance of ES cells consisted of

knockout Dulbecco’s modified Eagles medium (DMEM) supplemented

with 15% (v/v) ES qualified fetal bovine serum (FBS), 1% (v/v) non-

essential amino acid solution MEM NEAA, 1mM L-glutamine, 0.1mM

2-mercaptoethanol and 103U/ml mouse leukemia inhibitory factor (LIF),

ESGROs (Chemikon Int. Inc., Eugene, OR). Cells were kept undiffer-

entiated by changing media daily and passaging every 2 days with a

subculture ratio of 1:4. Tissue culture plates (T75) were treated with 0.1%

gelatin in distilled water and incubated for 24 h. For EB formation, LIF

was omitted from the medium and ES cells were allowed to differentiate

either in suspension culture using non-tissue culture-treated dishes without

gelatin coating or by seeding cells onto non-adherent PEG microwells

arrays.

2.5. Protein adsorption

Fluorescein isothiocyanate (FITC) conjugated bovine serum albumin

(BSA) was dissolved in PBS at 100mg/ml. To test protein adsorption to

PEG hydrogels made from macromers with different average MW (PEG

258, PEG 330, PEG 575 and PEG 1000), 50 mL of the protein solution was

evenly distributed on the surfaces and incubated for 20min at room

temperature in the dark. After incubation, samples were washed twice in
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PBS and analyzed under an inverted fluorescent microscope (Nikon

Eclipse TE2000-U). Fluorescent images were analyzed using ImageJ

software. Pixel intensities were averaged for 10 image fields for each of

three independent experiments. Intensities were normalized to a glass

control. Non-FITC-BSA stained surfaces served as negative controls.

2.6. Cell adhesion

PEG hydrogels of different average MW (PEG 258, PEG 330, PEG 575

and PEG 1000) were polymerized on glass slides and analyzed for cell

adhesion. ES cells were trypsinized and seeded at a density of

1.8� 102 cells/mm2 onto the PEG surfaces, glass, non-tissue culture-

treated polystyrene and gelatin-coated polystyrene. After incubation at

37 1C for 3 h, the slides were dipped into PBS to remove non-adherent

cells. Ten random images were taken on each surface and adherent cells

were counted. Results were normalized to the glass control. Experiments

were performed in triplicates.

2.7. Formation of EBs within microwells

PEG microwells were washed in PBS and then disinfected with 70%

(v/v) ethanol. Due to the low surface tension of ethanol, air bubbles

trapped in the microwells were also removed in this step (trapped bubbles

prevent cells from settling inside the microwells). Ethanol was diluted with

PBS and aspirated multiple times before differentiation media was added.

Undifferentiated ES cells grown in monolayer were washed, trypsinized

for 3min, resuspended in media without LIF, counted with a hemacyt-

ometer, and then plated onto the PEG microwell arrays. Cells were seeded

at desired densities and allowed to settle into the microwells for 1 h before

the arrays were washed by applying a gentle flow to remove undocked

cells. Seeded microwells were cultured at 37 1C and 5% CO2 and fed with

medium without LIF every 3–4 days.

2.8. Analysis of EB homogeneity

To quantify diameter homogeneity of EB populations, we seeded

arrays with cells at a density of 4� 102 cells/mm2. Images were taken at

days 3 and 6, and the diameters of 600 randomly selected aggregates were

measured using ImageJ software. As a control, ES cells were grown in

suspension culture on non-tissue culture-treated Petri dishes with the same

seeding density. Measured diameters were categorized in intervals of 5 mm
and their relative frequencies were calculated and plotted. Experiments

were conducted in triplicates.

2.9. Cell viability analysis

Cell viability was assessed using a LIVE/DEADs viability kit

(Molecular Probes Inc., Eugene, OR) according to the manufacturer’s

instructions. Cells were incubated in 4 mM ethidium homodimer (EthD)

and 2mM calcein-AM in PBS for 10min at 37 1C. Live cells stained green

due to enzymatic conversion of the non-fluorescent cell-permeant calcein-

AM to fluorescent calcein. Dead cells stained red after binding of EthD to

the DNA of membrane-compromised cells. Fluorescent cells were

visualized with appropriate filters under an inverted microscope (Nikon

Eclipse TE2000-U).

2.10. Aggregate retrieval efficiencies

EB harvesting from PEG 258 and PEG 1000 microwell arrays was

compared. To control microwell array geometry, microwell arrays were

molded from the same PDMS stamps, and PEG microwell depths were

confirmed using optical measurement. Microwell arrays were seeded in a

single 6 well plate and the number of EBs in each array was counted. At

day 6, the arrays were inverted and gently agitated. Aggregates remaining

inside the PEG 258 and PEG 1000 microwells after inversion and agitation

were counted and the percentages of retrieved aggregates were compared.

Experiments were performed in triplicates.

2.11. Statistical analysis

Statistical analyses were performed using a Student’s t-test (two-sided)

with po0.05 considered statistically significant. For statistical analysis of

EB sizes, a two-sided F-test was used to determine whether diameter

distributions manifested different variances (and therefore different

degrees of diameter heterogeneity).

2.12. Optimization of seeding density

ES cells grown in monolayer were trypsinized and counted with a

hemacytometer. Cells were then seeded onto microwell arrays at various

seeding densities and allowed to settle for 1 h. The number of cells settled

within 150 randomly chosen microwells was manually counted at 40�

magnification. Aggregate formation efficiency was computed as the

percentage of wells containing an aggregate (n4500). All experiments

were performed in triplicates.

2.13. Shear stress simulations

Fluid flow over the microwells can be mathematically modeled using

the Navier–Stokes equations for an incompressible fluid:

ru ¼ 0, (1)

rðuruÞ ¼ �rpþ mr2u, (2)

where u is the velocity vector, r the density, m the dynamic viscosity of the

fluid medium, and p denotes pressure at a given point within the fluid

domain. We assumed steady flow rates over the top surface of the

microwells and no slip-conditions at the microwell walls. Finite element

analysis was performed using COMSOL-Multiphysics 3.2 software

(COMSOL, Inc., Los Angeles, CA). The partial differential equations

were solved by matrix elimination using a linear predictor. A denser mesh

was used for the surface to capture fine features of shear stress variation,

and an overall minimum element quality of 0.31 was maintained.

3. Results

3.1. Microwell fabrication

Arrays were molded according to the steps outlined in
Fig. 1A. Microwells of various diameters (50, 75, 100, 150
and 175 mm) were fabricated from photocrosslinked PEG
of different average MWs (258, 330, 575 and 1000). The
well depth was kept at �20 mm to facilitate aggregate
retrieval and to minimize vertical diffusion limitations. To
prevent cellular interaction with the underlying glass
substrate, the entire array surface was engineered from
PEG (Fig. 1B).

3.2. Cell adhesion and protein adsorption on different PEG

surfaces

Photocrosslinkable PEG microstructures have variable
properties depending on the MW of their individual
macromers (average chain lengths). To guide selection of
our hydrogen composition, we evaluated the resistance of
PEGs of various MWs to ES cell adhesion and protein
adsorption. We found that cell adhesion to PEG was lower
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than to gelatin-treated polystyrene and non-tissue culture-
treated polystyrene (Fig. 2A), which are used for ES cell
culture and EB suspension culture, respectively. Protein
adsorption on PEG was also significantly lower than
adsorption on gelatin, glass, and non-tissue culture-treated
polystyrene (Fig. 2B). Furthermore, the resistance of PEG
to protein adsorption and cell adhesion correlated with
increasing average MW. Given these findings, we hypothe-
sized that high MW PEG formulations would be most
suitable as a microwell substrate. Our results also confirm
that PEG surfaces are sufficiently non-adhesive to model
suspension culture conditions.

3.3. Stability of PEG microwell arrays

Approximately 30% of the PEG 258 microwell arrays
did not remain stable on untreated glass supports when
incubated in PBS for 3 days. Arrays were designated as
‘‘unstable’’ if they detached from the underlying glass

substrate. To increase the integrity of the polymer–glass
interface, glass substrates were acrylated using TMSPMA.
This surface treatment introduced terminal acrylate func-
tional groups on the glass, providing anchoring sites for the
PEG acrylates. Indeed, TMSPMA treatment increased the
stability of PEG 258 and PEG 330 microwells to 100%
(Fig. 3A,B). It was not, however, sufficient to maintain the
stability of PEG 575 and PEG 1000 arrays. These arrays
detached by day 3 of incubation (Fig. 3B). We then diluted
the PEG prepolymer solutions to concentrations from 10%
to 80% (w/w) in PBS, observing that PEG 575 arrays
remained stable at PEG concentrations of p50% (Fig. 3C)
and PEG 1000 arrays at concentrations of p20%
(Fig. 3D).

3.4. Analysis of homogeneity of EB populations

ES cells were seeded onto PEG 575 and PEG 1000 arrays
with microwells of each of two diameters: 50 and 150 mm.

ARTICLE IN PRESS

PDMS stamp
UV

ES cellsMicrowell arrayGlass

Seeding

PEG

Well

bottom

Glass

Day 6
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Fig. 1. Fabrication of a microwell array for EB culture. (A) Schematic representation of the micromolding process to generate a PEG microwell array

from a photocrosslinkable PEG-DA prepolymer solution (brown). PEG was molded using a PDMS stamp with protruding features and then

photocrosslinked with UV light. The cross-section shows a microwell array loaded with ES cells. (B) Phase contrast images show a 50 mm microwell before

and after seeding. Higher magnification of a 175mmmicrowell that was cut vertically shows that the entire microwell surface—including the well bottom—

was made of PEG. In culture, EBs grew until they were constrained by the size of the well, yielding a homogeneous culture (upper image). In the previously

developed platform, non-specific cell adhesion led to monolayer formation (lower image). All scale bars represent 100mm.
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For each combination of microwell size and PEG
formulation, the distribution of EB diameters was tracked
over 6 days. Non-specific cell adhesion to the PEG
substrate was frequently observed on PEG 258 arrays.
Such adhesion resulted in EB outgrowth and the fusion of
neighboring EBs (Fig. 4), leading to wide day 6 diameter
distributions. In contrast, EBs cultured on PEG 1000
arrays were homogeneously constrained to the microwells
(Fig. 5). An F-test confirmed improved homogeneity of EB
populations in PEG 1000 microwell arrays with respect to
PEG 258 microwell arrays at day 6 (po1� 10�10 for both
the 50 and 150 mm cases).

3.5. Aggregate retrieval efficiencies

Employing our basic gravity- and agitation-driven
retrieval method, we noted significantly higher retrieval
efficiencies from PEG 1000 arrays than from PEG 258
arrays (Fig. 6); we applied comparable stresses yet retrieved
20% more aggregates from the 50 mm microwells and 25%
more aggregates from 150 mm microwells (Fig. 6A,D).
Interestingly, retrieval efficiencies were size dependant—

larger EBs were retrieved with higher yields. For PEG 1000
arrays, our retrieval method permitted the capture of more
than 80% of the EBs from 150 mm microwells and more
than 30% from 50 mm microwells (Fig. 6A, D). When
higher stresses were generated by applying fluid flow, 100%
of the aggregates could be retrieved in both cases.
However, retrieval from PEG 1000 arrays was easier,
allowing for application of gentler methods. LIVE/DEAD
assays on retrieved 50 and 150 mm aggregates demonstrated
that EBs remained viable after harvesting (Fig. 6B,C,E,F).

3.6. Optimization of seeding density

Arrays were seeded with cells at various densities to
establish a robust and reproducible protocol to dock cells
into the microwells (Fig. 7). At low seeding densities, the
number of cells settled per well was often insufficient to
yield an EB. Increasing the seeding density resulted in
stochastic docking of cells into the microwells with more
microwells achieving the critical cell density needed for
aggregate formation. Higher seeding densities also in-
creased the number of excess cells that settled around the
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showed less cell adhesion, with PEG 1000 being the most cell-repellent. (B) Protein adsorption to various MW PEG surfaces. Adsorption of FITC-coupled

BSA was indirectly measured by quantifying fluorescent intensities relative to a glass control. Non-tissue culture-treated polystyrene showed much higher

protein adsorption than did PEG hydrogels. Protein adsorption of PEG hydrogels decreased with increasing MW. For both experiments, PEG 258 and

PEG 330 were cured from 99% (w/w) PEG solutions. PEG 575 and PEG 1000 were highly hydrated polymers containing 20% PEG in PBS (*po0.05).
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microwells (Fig. 7A). We found that microwells of 20 mm
depth saturated at a seeding density of �4� 102 cells/mm2

with an average number of 7.5 and 70 cells in 50 and
150 mm diameter wells, respectively. The number of
resultant EBs correlated with seeding density but could
not be increased when the density exceeded 4� 102

cells/mm2, which was designated as our ‘‘optimal’’ seeding
density. The corresponding maximal aggregate formation
frequency was �60% for microwells of both geometries
(Fig. 7B,C).

3.7. Shear stress simulations

Our computer simulations confirm that cells within the
microwells are relatively shear-protected (Fig. 8A). We
simulated shear stress profiles in response to the applica-
tion of fluid flow over the microwells, with flow velocities
ranging from 1 to 10mm/s. We found that reducing the
microwell depth:diameter ratio can attenuate internal shear
stresses. Shear stresses at the bottom of 50 mm deep
microwells were lower than those in 20 mm deep microwells
irrespective of our changes in diameter (Fig. 8B). In these
50 mm deep arrays, shear stresses increased more rapidly
with flow velocity in 150 mm diameter microwells than in
50 mm diameter microwells (Fig. 8B). However, microwells

of 20 mm depth manifested shear stresses that were
diameter-independent over a range of velocities (Fig. 8B).
This diameter independence of shear stresses guided our
selection of well depth, as it allowed for consistent washing
and EB retrieval methods to be applied to microwells of
different diameters.

4. Discussion

ES cell differentiation is directed by a variety of
environmental stimuli mediated through the ECM, cell–cell
interactions, soluble factors, and physical stimuli [30–34].
In EBs, such stimuli may be particularly sensitive to
aggregate size and shape. For example, cells on the EB
surface are exposed to growth factors in the surrounding
medium, whereas cells within an EB perceive soluble factor
signals that are determined by internal diffusion gradients.
EB size influences the number and degree of cell–cell
contacts and the extent of ECM deposition. Some evidence
suggests that mechanical forces and shear stresses may also
affect differentiation outcome [35]. The integration of these
stimuli can dictate differentiation fate. For example, cells in
the periphery of EBs frequently differentiate into primitive
endoderm while cells at the center tend towards primitive
ectoderm [5,36,37].
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To uniformly specify EB cell fate, the cellular micro-
environment must be precisely controlled. We had pre-
viously developed a platform of PEG microwells for
culturing EB populations [27]. However, the homogeneity
of EBs grown on this platform was suboptimal due to non-
specific cell adhesion, which led to EB overgrowth, fusion
of neighboring EBs, and even formation of monolayers
(Fig. 1B). In this study, we adapted our previous system to
optimize EB homogeneity. It should be noted that here we

have not done extensive lineage analysis to confirm that the
aggregates grown on our platform are indeed EBs, though
our previous studies indicates that this is the case.
Non-specific cell adhesion was a significant hurdle to

achieving homogenous aggregate populations. Aiming to
enhance the cell-repellence of our substrate, we tested
PEGs of various average MWs for ES cell adhesion,
finding that PEG surfaces were less adhesive than non-
tissue culture-treated polystyrene, the standard in vitro

ARTICLE IN PRESS

Fig. 4. Aggregates grown in PEG 258 and PEG 1000 microwells after 3 and 6 days of culture. (A) Aggregates grown in 50mm diameter wells. Significant

overgrowth was observed by day 6 of culture on PEG 258. In contrast, aggregates in the PEG 1000 arrays were uniform and remained constrained to the

microwells. (B) Aggregates grown in 150mmmicrowells. LIVE/DEAD assays on day 6 show that EBs remained viable within the microstructures. All scale

bars correspond to 100mm.
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Author's personal copy

substrate for EB suspension cultures. We noted that the
cell-repellence of PEG surfaces increases with increasing
average MW (Fig. 2A). PEG 1000 surfaces manifested
virtually no adhered cells. When cultured for extended
periods of time, however, cells can secrete proteins and
adhesion molecules that may change the properties of the
surface on which they grow. This process is termed
‘‘surface remodeling’’ [38]. Surface remodeling may lead
to enhanced non-specific adhesion during prolonged
culture. To address this possibility, we analyzed PEGs of
various MWs for protein adsorption, finding that protein-
repellence also increases with increasing average MW
(Fig. 2B). Thus, we would expect high MW PEG surfaces
to resist surface remodeling. For these reasons, PEG 1000
was selected as a desirable substrate for microwell
fabrication.

Successful application of our microwell platform
requires that the PEG arrays remain stably fixed to an
underlying substrate. Silane and acrylate chemistries have
been widely used to graft PEG onto surfaces such as glass
and to ensure the integrity of the glass–polymer interface
[39,40]. We treated glass supports with TMSPMA to
introduce terminal acryl functional groups onto the glass
surface. During free radical driven polymerization, these

acryl groups established bonds with acrylate groups of the
polymer, thus covalently anchoring the microwell array to
its support. Acrylation increased the stability of PEG
microwell arrays of low MW (Fig. 3A), but could not alone
ensure the stability of PEG 575 and PEG 1000 microwell
arrays (Fig. 3B).
We reasoned that detachment of the high MW PEG

arrays might be caused by swelling upon exposure to an
aqueous environment. For certain hydrogels, the degree of
swelling can be predicted based on temperature and the
average MW between crosslinks [41,42]. High MW PEG
polymers are relatively diffusive, permitting rapid absorp-
tion of water. Rapid water uptake and swelling might
create forces that stress the glass–polymer interface and
lead to detachment of the microwell array. Accordingly, we
used prepolymer solutions made from PEG diluted in PBS
at different concentrations to generate hydrated polymers
that would swell less when incubated. When a prepolymer
solution containing 20% PEG 1000 was used, the resulting
microwell arrays were stable during incubation and could
be used for extended culture periods (Fig. 3C).
Cell aggregates were successfully grown inside the

optimized microwell arrays and remained viable even for
prolonged culture periods. After 6 days of culture on PEG
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Higher cell seeding densities did not yield higher EB formation efficiencies. (C) 150mm microwells saturated with an average of 70 cells per microwell with

the same optimal seeding density of 4� 102 cells/mm2.
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1000, cells had not attached to the polymer surface, and the
troublesome formation of monolayers associated with PEG
258 arrays was not observed (Fig. 4). Along with improved
cell-repellence, the increased resistance of PEG 1000
microwell arrays to protein adsorption might explain the
reduction in cell outgrowth. Aggregate populations
obtained from the microwells were more homogenous in
size than suspension culture EBs (Fig. 5). An analysis of
aggregates grown in the PEG 1000 platform revealed
narrow diameter distributions with mean aggregate dia-
meters falling close to the microwell diameters. Statistical
analysis confirmed a significantly higher degree of diameter
homogeneity among aggregates in PEG 1000 microwell
arrays than in PEG 258 (Fig. 5).

For an EB culture system to be widely applicable in
differentiation studies, retrieval methods should preserve
cell viability. We used a gravity- and agitation-driven
retrieval method, and compared retrieval rates from PEG
258 and PEG 1000 microwell arrays of identical geome-
tries. Retrieval efficiency was found to increase with
increasing PEG MW (Fig. 6). Aggregates retrieved at day
6 remained viable after removal (Fig. 6C,F). Easier
harvesting from PEG 1000 arrays allowed for gentler
retrieval methods, thus decreasing the probability of
damaging cells.

EB formation hinges on the existence of a critical cell
density within microwells. Below this density, aggregates
form infrequently. To successfully grow large numbers of
aggregates within a microwell array, it is thus necessary to

achieve a critical cell density inside a large number of
microwells. The need to achieve requisite cell densities
should be balanced against the drawbacks of excessive cell
seeding (namely expense and potential for overgrowth).
To this end, we sought to establish a seeding protocol to
optimize EB formation. Seeding at low densities yielded
few EBs, and cells without cell–cell contact died (Fig. 7A).
At higher densities, more aggregates formed, but cells also
settled on the PEG surface between microwells and had to
be washed away (Fig. 7A). If not washed away, these excess
cells formed EBs in suspension that sometimes aggregated
with EBs grown inside the microwells, reducing homo-
geneity of the EB population. Furthermore, cells that
settled between the microwells were prone to non-specific
adhesion. Interestingly, the seeding density for maximal
aggregate formation and the saturation density (the seeding
density at which the microwells were saturated with cells)
were identical (�4� 102 cells/mm2) and independent of
diameter (Fig. 7C,D). Subsequent experiments have
demonstrated that formation efficiencies can be further
increased by modifying microwell geometry (data not
shown).
ES cells preferentially docked in the shear-protected

microwells. Cells within the microwells were shielded from
stresses generated during routine washings and media
changes needed for culture maintenance (Fig. 8A).
Computer simulations predicted that shear stresses in
50 mm deep micowells would be lower than in microwells
of 20 mm depth. However, for a shallow microwell depth of
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20 mm, simulated shear stresses in 50 and 150 mm diameter
microwells remained comparable for a wide range of
velocities (Fig. 8B). As such, we could apply identical
washing procedures to microwells of different diameters
without introducing a potential bias for a given microwell
geometry. We therefore used 20 mm deep microwells for
this study. The shallow wells also attenuated vertical
diffusion limits and eased aggregate retrieval. However,
dependent on purpose, geometries of the microwells can be
changed readily [27].

5. Conclusion

We present a system for culturing homogeneously sized
EBs in arrays of shear-protected microwells. Using this
platform, uniform populations of EBs can be reproducibly
generated and retrieved. Non-specific cell adhesion on the
microwell substrate was reduced by appropriate choice
of PEG formulation, thereby inhibiting overgrowth and
preventing fusion of neighboring aggregates. We also
established a robust seeding protocol for optimizing EB
formation efficiencies. Our improved culture platform has
the potential for scale-up and might be a versatile tool for
ES cell differentiation studies and high-throughput stem
cell experimentation.
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