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bstract

In this paper, we present a low cost, flexible and reusable parylene-C shadow mask technology for diverse micropatterning applications. The
mallest feature size of 4 �m is demonstrated and the technology is scalable up to full wafer scale. With the addition of SU-8 pillars, we also
emonstrate multimask processing with an alignment accuracy of about 4–9 �m. To achieve features with fine resolution, a low temperature and

igh aspect ratio (>8:1) parylene etch process is also developed. Utilizing this shadow mask, we successfully patterned proteins and cells on various
urfaces (glass, PDMS, methacrylate). High pattern flexibility (structures with different shapes and dimensions are successfully patterned) and
atterning on curved PDMS surfaces are also demonstrated. This technology has potential applications for patterning proteins, cells and organic
ransistors on conventional and/or unconventional substrates.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Classical microfabrication based on optical lithography has
imitations for applications such as patterning organic materi-
ls (solvent incompatibility), patterning on fragile (released)
EMS devices, patterning of non-traditional materials (proteins

nd cells), and patterning on plastic substrates (that cannot with-
tand high temperatures) and on non-planar surfaces. Hence,
hadow mask technology is gaining impetus as an alternative
icropatterning technique for diverse applications on conven-

ional and unconventional surfaces.
Shadow masks can be classified as active or passive shadow

asks. The difference between them is that the aperture size

f the active shadow masks are adjustable within demand [1,2]
hereas the passive shadow masks, which include most current

hadow masks, have a fixed aperture size. Previously reported
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assive microstencils, which are made of rigid or polymeric
embranes, have various limitations. For instance, Si, Si3N4,
EM grid and stainless steel shadow masks are rigid and brittle,

equire complicated and expensive processing steps [3,4]. In
ddition, they lack the precise pattern definition and the pattern
exibility to different pattern dimensions due to the gap between

he stencil and the substrate [5–8]. Elastomeric microstencils
such as PDMS), on the other hand, are not easy to handle, and
ave difficulty in achieving mechanical alignment and lack high
esolution [9]. Shadow masks made of SU-8 polymers [10] are
lso not suitable for wafer scale patterning applications since
heir high residual stress makes them buckle. Microstencils
ade of JSR THB-430N negative UV photoresist will result

n enlargement of features due to their non-straight sidewall
rofiles [11]. Furthermore, dry lift-off method as demonstrated
y Ilic and Craighead is limited to thin films of single use

nd to surfaces compatible with microfabrication technologies
silicon and glass) [12].

In this paper, we present a flexible, reusable, transparent
nd biocompatible parylene-C microstencil technology as illus-

mailto:mehmetd@ece.neu.edu
dx.doi.org/10.1016/j.sna.2007.10.053
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Fig. 1. The parylene shadow mask being peeled off a wafer after fabrication.

rated in Fig. 1. To realize this stencil, a novel low temperature
arylene-C etch process is developed to create the high aspect
atio (HAR) structures with the use of an inductively coupled
lasma (ICP) tool. The potential applications of this sten-
il technology are numerous including patterning for organic
lectronics, patterning of proteins and cells and patterning on
opographically rough, curved and unconventional surfaces and
n fabricating metamaterials.

. Parylene-C deposition

Parylene, poly-para-xylylene, is widely utilized in the med-
cal and electronics industries as a conformal pinhole free
oating. Due to its high mechanical strength (tensile strength
f 3.2 GPa) it is being increasingly utilized as a structural layer
s well as a flexible substrate [13,14]. Up to a certain thick-
ess (20 �m) the parylene films are flexible and will conform to
urved surfaces and also have the high mechanical strength and
obustness compared to PDMS stencils making them reusable
21]. The flexible shadow mask is fabricated from parylene-C
hich is deposited at room temperature and we first detail its
eposition process in the following section.

Polymerizations of polymer materials are typically done in
olution form or gas/vapor phase form with/without the assis-
ance of plasma [15]. Parylene deposition is a chemical vapor
eposition (CVD) process, which is done at 25 mTorr and at
oom temperature (25 ◦C). Parylene deposition process has three
ain stages. The first stage is vaporization process, where a

olid parylene dimer is vaporized at a temperature of 175 ◦C.
he second stage is the pyrolysis process, during which vapor-

zed parylene gas moves slowly into the pyrolysis chamber, and
he parylene gas is decomposed into the parylene monomer at a

◦
emperature of 690 C. The last stage is the deposition process
here the parylene monomers move slowly into the deposition

hamber and get adsorbed on the substrate surface and polymer-
ze. The steps of parylene deposition are illustrated in Fig. 2.

Fig. 2. The parylene deposition sequence.
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uring the polymerization process, the monomer in the depo-
ition chamber is first adsorbed on the substrate, then surface
igration and bulk diffusion of monomers take place, finally

he chemical reaction between the monomers form the film. The
ean free path of parylene monomer in the deposition chamber

s in the order of 0.1 cm during this process which results in
onformal deposition. Since the polymerization process occurs
t the room temperature, the deposited parylene films are rela-
ively stress free. Parylene shadow mask requires a fairly thick

embrane, ∼10–20 �m so that it is reusable for micropatterning
pplications.

. Fabrication of the parylene-C shadow mask

To fabricate the flexible microstencil, first, a 10–20 �m thick
arylene is deposited on a silicon wafer (PDS2010, Specialty
oating Systems, Indianapolis, IN). Prior to the deposition
f aluminum, we routinely roughen the parylene surface to
nhance adhesion of aluminum onto the parylene surface utiliz-
ng the inductively coupled plasma reactor (Plasmatherm 790)
nder the following conditions (RF bias power = 100 W, source
ower = 150 W, O2 flow = 50 sccm (standard cubic centimeters
er minute), Ar flow = 20 sccm, time = 30 s, pressure = 20 mTorr,
emperature = 25 ◦C). Then, a 2000 Å thick aluminum hard mask
s deposited using sputter deposition. The patterns are next
enerated by conventional photolithography method using a
ositive photoresist (Microposit S1813, Shipley Company) and
luminum is etched (using photoresist as a mask) in aluminum
tchant type A (Transene Company Inc., Danvers, MA) at 50 ◦C
or 30 s. Next utilizing the Al as a hard mask, we etch through
he parylene layer in an ICP etcher (Plasmatherm 790). After
he ICP etch, the Al hard mask is removed in aluminum etchant
ype A at 50 ◦C for 2 min. The parylene shadow mask is next
eeled off the wafer as shown in Fig. 1 and is ready to use. As a
ide note, prior to parylene deposition, we routinely use HMDS
s an adhesion promoter since conventional adhesion promoters
or parylene-C such as A-174 silane tend to create strong adhe-
ion between the film and the substrate and hence cause the film
o tear upon peeling. We have demonstrated that both 10 �m
nd 20 �m thick parylene-C films are flexible and reusable. For
mall area applications (i.e. 10 mm × 10 mm) we recommend
sing 10 �m thick stencils whereas for large area applications
three inch wafer level), the 20 �m thick film is recommended
ven though it is slightly less flexible.

For patterns with large dimensions (in excess of 200–300 �m)
hat do not require fine (2–3 �m) resolution, we fabricate the
hadow mask with a room temperature ICP etch since lateral
tching is not a major concern. Furthermore, while fabricating
tencils with fine features (<10 �m), one requires an anisotropic
tch and hence, we have developed a novel high aspect ratio
arylene etch process which is detailed in the next section.

. High aspect ratio etching of parylene-C
Parylene is gaining popularity as a unique low temperature
aterial for many biomedical and non-biomedical applications

16,17]. One of the current needs for the parylene micromachin-
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Table 1
ICP etch recipes for low temperature (5 ◦C) and low pressure (5 mTorr) parylene-C etching

Etch # Etch rate (�m/min) RF bias power (W) Source power (W) O2 (sscm) Ar (sccm)
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during which the surface maintained its hydrophobic behavior
1.7 250
1.0 100
0.5 100

ng community is a high aspect ratio etching process. Meng et
l. [18] utilizing a DRIE tool, obtained aspect ratios of up to 3:1,
oreover to create reusable stencils with fine features, stencils
ith higher aspect ratio structures are required. It is possible to

educe the isotropy of a reactive ion etch process by reducing the
tch temperature which is commonly done by etching silicon at
ow temperatures (∼−100 ◦C). Moreover, for etching polymers
uch as parylene-C, reducing the etch temperature down to 5 ◦C
erves a similar purpose. Using an ICP reactor (Plasmatherm
90), we developed multiple recipes (Table 1) with fast etch
ates and anisotropic profiles (>8:1). The parylene film shown
n Fig. 3(a) with a thickness of 55 �m is etched with the recipe
b” in Table 1 and the one shown in Fig. 3(b) with a thickness of
0 �m is etched with recipe “c” in Table 1 and they both display
lmost vertical sidewalls. We were able to etch a 55 �m thick
arylene film through an opening of 6 �m which is equivalent

o an aspect ratio of about 9:1. Aluminum was used as the hard

ask during the ICP etching process, which worked well except
he fact that it sputtered during the etching process and cre-

ig. 3. Anisotropic etch profiles from (a) 55 �m thick parylene and (b) 10 �m
hick parylene.
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ted residues as seen in Fig. 3(b). We are currently investigating
eans to address this issue.

. Surface properties of parylene-C

As-deposited parylene-C, similar to PDMS, displays
ydrophobic properties with a contact angle of ∼98 ◦C. The as-
eposited hydrophobic parylene surface seals extremely well to
ther hydrophobic surfaces. Furthermore, it does not adhere well
o hydrophilic surfaces, a property that is important while using
he parylene-C as a shadow mask. Accordingly, we have char-
cterized the contact angle and the stability of parylene sheets
n aqueous environments over time. We have submersed an as-
eposited parylene sheet into deionized water for 3 days (which
ay be the case for multiple patterning and rinsing experiments)
s seen in Fig. 4(a). For various applications (such as pattern-
ng proteins and cells), one would prefer to have a hydrophilic
urface and require that the surface maintains such property

ig. 4. (a) Contact angle measurement of as-deposited parylene-C surface
n aqueous environments up to 3 days. (b) Contact angle measurement of
ydrophilic parylene surface in aqueous environments up to 3 days.
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fter being exposed to aqueous environments. Utilizing a short
2 plasma treatment (pre-metal surface roughening recipe from
ection 3), the as-deposited hydrophobic parylene surface can be
onverted into a hydrophilic surface. Similar to the hydropho-
ic stability test, hydrophilic parylene surface was also tested
n deionized water over 72 h. Unlike PDMS which becomes
ydrophobic within a few hours after plasma treatment, pary-
ene surface remained hydrophilic days after plasma treatment as
isplayed in Fig. 4(b). A side note is that the roughening recipe
tilized to improve the adhesion of aluminum to the parylene
urface renders the top parylene surface hydrophilic. Moreover,
he bottom side of the stencil remains hydrophobic during pro-
essing and can seal easily to many hydrophobic surfaces in a
onformal manner.

. Micropatterning applications of the parylene shadow
ask

Fig. 5 illustrates the sequence of steps for micropatterning
tilizing the parylene shadow mask. In Fig. 5(a) we illustrate
he parylene shadow mask after being peeled off a wafer. First,
e place the microstencil on a substrate where the patterning is
eeded as shown in Fig. 5(b). Then, we deposit the material (e.g.
eposit 1500 Å gold or 1500 Å aluminum) over the shadow mask
s seen in Fig. 5(c). Next, we peel off the shadow mask from

he substrate which results in patterned microstructures on the
ubstrate as seen in Fig. 5(d). The peeling process does not cause
amage to the desired dimensions of the micropatterns in terms
f shape, size and aspect ratio. Finally as illustrated in Fig. 5(e),

s
m
i
s

ig. 5. Sequence of steps for micropatterning using reusable parylene shadow mask
Au), remove the shadow mask from the substrate (d) and etch the deposited metal (e
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he parylene shadow mask is ready for reuse after removing
he deposited material. For instance, to remove 1500 Å of alu-

inum, we place the stencil into aluminum etchant (aluminum
tchant type A) for 2 min at 50 ◦C. Parylene stencil can be uti-
ized for patterning many low temperature deposited materials,
nd we have demonstrated a few examples in patterning proteins
nd cells (utilized a 10 �m thick parylene stencil), metal layers
utilized a 10 �m and 20 �m thick parylene stencil), patterning
n curved surfaces (utilized a 10 �m thick parylene stencil) and
ultistep patterning (utilized a 20 �m thick parylene stencil),

nd the results are described below.

.1. Micropatterning of proteins and cells

Patterning of proteins and cells has previously been demon-
trated with a parylene-C film by Takeuchi [9] and Craighead
12] on traditional surfaces. Since both groups utilized a very thin
arylene layer (between 1 �m and 2 �m), their approach was
imited to single use where the parylene membrane tore apart
pon peeling and also the approach was limited to traditional
urfaces onto which parylene can be deposited and etched from
silicon and glass). In our approach, we remove the parylene-C
hadow mask from the surface where it is fabricated on and then
pply it to any desired surface.

Parylene-C is a well-known biocompatible material uti-
ized for encapsulating implantable devices. Using our parylene

tencil, we successfully patterned proteins on polystyrene and
ethacrylated glass surfaces as seen in Fig. 6. Since parylene

s a relatively inert material, one can wash away the protein
olutions and can reuse the parylene stencil multiple times. As

: (a) shadow mask as fabricated, (b) place it on a substrate, (c) deposit metal
) and repeat steps (a-d).
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gest that there is little pattern degradation or blurring during
deposition indicating an exceptionally good seal between the
parylene film and the silicon substrate.
ig. 6. Fluorescent images of proteins patterned on (a) polystyrene and (b)
ethacrylated glass surfaces.

hown in Fig. 7(a), we were able to pattern FITC-labeled BSA
rotein on a PDMS substrate using the stencil. The patterning
as repeated nine times, during which the resolution was main-

ained as seen in Fig. 7(b). Following protein patterning, we next
emonstrated applications of the parylene stencil in tissue engi-
eering and have successfully patterned NIH-3T3 fibroblasts (as
een in Fig. 8) and other cells types including AML12 hepato-
ytes and mouse embryonic stem cells on PDMS surfaces. Next,
e fabricated a cylindrical PDMS slab and utilizing our flexible
arylene stencil, patterned fluorescently labeled proteins shown
n Fig. 9. As illustrated in Fig. 9, due to the flexible nature of
ur stencil, one can quite readily pattern curved surfaces.

.2. High pattern resolution and pattern flexibility

To characterize the properties of the parylene-C shadow
ask, several parylene stencils with various dimensions, spac-

ngs and shapes were fabricated. After fabrication, these
embranes were placed over silicon wafers and metal films (Al

nd Cr–Au) with 1500 Å in thickness were sputter deposited.
fter the deposition, we have carefully peeled off the shadow
ask from the silicon wafer and reused it multiple times with-

ut any difficulty. Due to the relatively large dimensions of the

eatures (4–5 �m), one can reuse this mask many times as the
oles do not get clogged up and the micropatterns were formed
n a reproducible manner. As seen in Fig. 10(a), we were able to
chieve fine features as small as 4 �m in a reproducible manner
ig. 7. FITC-BSA was patterned on PDMS after (a) 1st patterning and (b) 9th
atterning.

sing a 10 �m thick stencil. Utilizing the same shadow mask,
e also demonstrated patterning both large and small features

imultaneously as displayed in Fig. 10(b) illustrating the pattern
esolution of our technology. The feature size measurements that
ere conducted using both scanning electron microscope (SEM)

nd the optical microscope agree well with each other and sug-
Fig. 8. Patterned NIH-3T3 fibroblast cells.
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ig. 9. Images of fluorescently labeled proteins patterned on a curved PDMS
urface.

We next demonstrated pattern flexibility using our pary-
ene shadow mask technology as illustrated in Fig. 11. We
ave successfully patterned structures with different shapes and
imensions. Comparing the parylene shadow masks of thick-
ess 10 �m and 20 �m, we have discovered that the utilization

f the 10 �m thick stencil will result in a gap between the sten-
il and the substrate (due to crimpled surface) when brought in
ontact with the silicon wafer, hence resulting in deformed pat-
erns. Moreover, the 20 �m thick membrane was rigid enough

ig. 10. High pattern resolution achieved using parylene shadow mask. Circular
eatures are patterned with dimensions of (a) 4 �m and (b) 50 �m.
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o that we were able to achieve precise pattern definition as seen
n Fig. 11(a–d).

.3. Micropatterning on curved surfaces

Patterning on curved surfaces has potential applications in
exible electronics and biotechnology. To demonstrate pattern-

ng on curved surfaces, we have fabricated a PDMS cylinder
hich is 17 mm in height and 15 mm in diameter. A 10 �m thick
arylene-C shadow mask was subsequently wrapped around
his cylinder. Then a 1500 Å thick aluminum film was sputter
eposited onto the cylinder and then the parylene shadow mask
as peeled off and the resulting micropatterns were imaged
sing an SEM. Fig. 12(a) displays the optical photograph of
he PDMS cylinder with the patterns and Fig. 12(b) displays
he magnified SEM micrograph of one of these patterns. Due
o the hydrophobic nature of the PDMS surface, the parylene
heet adhered well to the cylindrical surface and the patterns
ere well defined.

.4. Mechanical alignment

Most of the current shadow mask technologies are limited to
ingle step patterning applications, yet the benefits achievable
rom being able to pattern multiple times utilizing alignment
eatures are numerous such as being able to do post process-
ng on released/suspended MEMS devices and in fabricating
rganic transistors. To carry out a multimask–patterning task,
echanical alignment structures are required. Accordingly, we

ave designed and fabricated SU-8 alignment posts to hold the
arylene shadow masks in place and to align subsequent sten-
il layers [10]. SU-8 is a fairly thick (up to 500 �m) polymeric
aterial that is being increasingly used in the MEMS and micro-

abrication fields. Similar to the LIGA process, one can create
igh aspect ratio structures using a single step exposure.

To create the alignment posts, SU-8-2100 (a negative pho-
oresist, MicroChem Corporation, Newton, MA) is first spun on
3′′ silicon wafer followed by exposure and development. The

omplete multimask processing sequence is detailed in Fig. 13.
e have created 250 �m thick alignment posts made of SU-8

Fig. 13(a)) to house the shadow masks for subsequent align-
ent tasks. The first parylene stencil (20 �m thick) was carefully

laced inside these posts (Fig. 13(b)). The alignment was ver-
fied and adjusted manually under an optical microscope with
he fine alignment being performed utilizing a fine tip tweezer.

metal film (Al or Cr–Au with 1500 Å thickness) was next
eposited onto the wafer. We have utilized sputter deposition
o demonstrate our technique, yet one can also perform any low
emperature deposition processes. After removing the first pary-
ene stencil from the silicon wafer, a second parylene stencil
ith complementary patterns was carefully placed inside the

lignment posts (Fig. 13(c)). The second metal deposition was
hen performed (Al and/or Cr–Au with 1500 Å thickness) and

he parylene stencil was subsequently removed from the wafer
Fig. 13(d)). The misalignment from the multimask process-
ng was then examined both under a microscope and under a
EM. To characterize the alignment accuracy in the x and y
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Fig. 11. High pattern flexibility: (a) the width of the spiral is 100 �m, (b) the smallest an
between squares is 15 �m, (c) starfish patterns, (d) the rectangular patterns where the

Fig. 12. Micropatterning on curved surfaces: (a) optical image of the PDMS
cylinder with micropatterns and (b) magnified SEM micrograph of one of the
patterns.
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d the biggest squares are 10 �m × 10 �m and 100 �m × 100 �m and the spacing
spacing between lines is 15 �m and the width of an individual line is 25 �m.

irections, we have created two different complementary “E-
haped” structures [10,19] as seen in Fig. 14. Fig. 15 displays
he measurements from the alignment tests. In the x-direction, an
-offset of 4.6 �m and y-offset of 8.6 �m were measured using
he complementary structures. In the y-direction, the x-offset and
-offset were 6.9 �m and 4.1 �m, respectively.

In summary, we demonstrated a multistep patterning process

ith a misalignment of about 4–9 �m using SU-8 pillars. During

hese experiments, we have utilized two different thicknesses for
he SU-8 posts (100 �m and 250 �m). We have found out that the
00 �m posts did not hold the parylene shadow masks properly

ig. 13. Micropatterning using SU-8 alignment pillars: (a) fabricate 250 �m
hick SU-8 pillars, (b) place the first shadow mask, (c) deposit metal and then
eel off the first shadow mask and place the second shadow mask, and (d) peel
ff the second shadow mask.
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Fig. 14. Test structures for misalignment measurements in x and y directions
where the width of the electrode is 10 �m and the spacing between them
is 50 �m: (a) alignment tests in x-direction using complementary ‘E’ shaped
structures and (b) alignment test in y-direction using the same structures.

Fig. 15. Measured offsets from the misalignment measurements in x (a) and y
(b) directions.
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uring manual manipulation (for minor adjustments) whereas
he thicker version (250 �m) holds the shadow mask in place
nd hence was the alignment post of choice.

Among its many advantages, parylene shadow masks can be
leaned and are resuable (for at least 10 times) since parylene
s an inert material [20]. The fabrication technology is fairly
imple, even though we demonstrated our stencils on three-
nch wafers, one can easily extend this technology to larger
imensions. Furthermore, due to its mechanical strength and
ts reusability, one can utilize this technology for patterning
arge area devices in Flextronics and Macroelectronics as well
s patterning for heterogeneous device integration. A final note
s that a thin parylene membrane (<10 �m) has the tendency
o fold while being held by tweezers, which makes it difficult
o precisely position the shadow mask on the sample. Thus, a
hicker membrane of at least 20 �m is required for high pattern
exibility and for large area patterning applications.

. Conclusions

In this paper, we present a flexible, reusable, biocompatible
arylene-C shadow mask technology. The minimum feature size
f 4 �m is demonstrated while using a 10 �m thick parylene-C
tencil for small area patterning applications. A low tempera-
ure (5 ◦C) high aspect ratio (>8:1) parylene etch process was
lso developed to fabricate the fine structures with anisotropic
rofiles. Utilizing this flexible shadow mask technology, we
emonstrated patterning of proteins and cells on polystyrene,
lass and PDMS surfaces. The parylene shadow mask is bio-
ompatible, chemically inert and reusable. Micropatterning of
roteins as well as inorganic materials (metals) on curved
DMS surfaces are also demonstrated. Multimask processing

s demonstrated with the addition of SU-8 support pillars and
he misalignment between masks was measured to be between
�m and 9 �m. The parylene stencil method has high pattern
exibility as various shapes with different dimensions can be
reated utilizing the same stencil. The thickness of the pary-
ene stencil is critical for large area micropatterning applications
here a 20 �m thick stencil needs to be utilized. The parylene-
shadow mask technology is versatile and will potentially

nd diverse patterning applications in numerous fields includ-
ng organic electronics, macroelectronics, metamaterials and
iotechnology.
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