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DNative extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the sur-

rounding cells. A promising strategy tomimicking native tissue architecture for tissue engineering applications is
to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous
scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated.
Here, we report on the encapsulation and sustained release of model hydrophobic drug (dexamethasone
(Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)–poly(butylene terephthalate)
(PEOT/PBT), a polyether–ester multiblock copolymer to direct differentiation of human mesenchymal stem
cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar
scaffolds. The entrapment of Dex within the beaded structure results in sustained release of drug over the period
of 28 days. This ismainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaf-
folds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase
in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared
to the direct infusion of Dex in a culture medium. The formation of a mineralized matrix is also significantly
enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer
scaffolds with appropriate chemical cues to direct tissue regeneration.

© 2014 Elsevier B.V. All rights reserved.
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Native extracellularmatrix (ECM) is a complexfibrous structure that
provides physical, chemical, and mechanical cues to direct cellular
processes [1–5]. A promising strategy to mimicking native tissue archi-
tecture is to engineer fibrous scaffolds using electrospinning (ESP) tech-
niques [6]. By incorporating appropriate topographical or therapeutic/
bioactive cues within the fibrous scaffolds, various cellular processes
can be controlled to facilitate the formation of musculoskeletal tissues
[7–9]. For example, these fibrous scaffolds could find applications as
bone fillers, in non-load bearing defects such as skull defects, or as
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bone membranes such as in the case of periosteum regeneration
[7–9]. Electrospun scaffolds composed of hydroxyapatite/chitosan
have shown to promote new bone regeneration in vivo by activating
integrin and BMP/Smad signaling pathway [10]. Fibrous membranes
composed of gelatin/polycaprolactone have shown to promote
in vitro and in vivo cartilage tissue regeneration [11]. In a similar study,
fibrous scaffoldsmade from poly(L-lactide-co-ε-caprolactone)/collagen
(P(LLA-CL)/Col) stimulate differentiation of tendon-derived stem cells
when subjected to mechanical stimulation [12].

Even when load bearing applications are considered, electrospun
scaffolds can be used in combination with, for example, rapid
prototyped scaffolds with mechanical properties matching those of
bone [13]. In this respect, the electrospun scaffolds can be useful to
deliver biological factors that can augment the regenerative process.
Silk fibroin based electrospun scaffolds loadedwith bonemorphogenet-
ic protein 2 (BMP-2) have shown to promotemineralizedmatrix forma-
tion in vitro due to release of BMP-2 [14]. The surface of electrospun
fibrous can be functionalized to load appropriate bioactive moieties to
s for sustained drug release integrated into fibrillar scaffolds, J. Control.
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control cell fate [15–17]. To obtain a 3D porous network, a range of
techniques such as use of porogenic materials or water-soluble agents
within the polymer solution prior to the electrospinning are proposed
[18]. After subjecting the electrospun scaffolds loaded with porogenic
materials or water-soluble agents to water, the desired porosity
can be achieved [18]. Another technique to enhance the porosity of
electrospun scaffolds includes laser ablation [19]. This technique allows
incorporation of micromachined pores with predetermined dimension
and location to improve the cellular infiltration.

A range of hydrophobic or hydrophilic therapeutic agents can be
incorporated within electrospun fibers by blending them with the
polymer solution prior to electrospinning [20–23]. The entrapped ther-
apeutic/bioactivemolecules can be released in vitro and in vivo as part of
the volumetric or surfacematrix or as a soluble factor in a sustained and
controlled manner to control cellular behaviors. For example, bioactive
agents such as bone morphogenetic proteins (BMPs) [24,25], dexa-
methasone [26,27], hydroxyapatite [28,29], calcium phosphate [30]
and silicate nanoparticles [31–33] are incorporated within polymeric
scaffolds to induce osteogenic differentiation of stem cells. The release
rate of these bioactive moieties can be modified by altering the fiber
morphology, degradation rate, hydrophilicity of polymer and drug load-
ing [9,23,34,35].

Dexamethasone (Dex) is a synthetic member of the glucocorticoid
class of steroid drugs and is used in the treatment of severe inflammato-
ry diseases [36]. Dex has a concentration-dependent stimulatory effect
on the differentiation of human mesenchymal stem cells (hMSCs) [37,
38]. For example, hMSCs treatedwithDex show increased levels of alka-
line phosphatase (ALP) activity, which is an early marker for osteogenic
differentiation [39]. Furthermore, Dex is also known to enhance matrix
mineralization of hMSCs in combination with β-glycerolphosphate and
ascorbic acid [40]. Although the exact mode of action by which Dex
functions is unidentified, it is known that it enters the cell where it
binds to specific regulatory proteins thereby activating the transcription
of osteoblast-specific genes [26]. Although Dex is known to have a
prolonged effect on ALP expression and matrix mineralization even
after only a few days of exposure [41], continuous treatment of hMSCs
with Dex results in the most efficient induction of differentiation and
subsequent matrix mineralization [42].

To control the release of Dex, various strategies such as encapsulation
(or entrapped/attached) within poly(lactic-co-glycolic acid (PLGA)
microspheres [43], carbon nanotubes [44,45], poly(amidoamine)
(PAMAM) dendrimer nanoparticles [46] and hyperbranched polyester
hydrogels [47] have been reported. However, limited research has been
focused on controlled delivery of Dex from electrospun scaffolds
[48–51]. Martins et al. showed an increase in ALP expression and matrix
mineralization of hMSCs on electrospun polycaprolactone (PCL)/Dex
meshes in a basal medium containing β-glycerophosphate compared
to the unloaded meshes in an osteogenic medium [48,51]. This study
demonstrated that controlled release of Dex is an improvement over
normal dexamethasone-in-medium culture conditions [48,51]. Howev-
er, due to crystalline nature of PCL, the sustained release of Dex over
long periods of time was not observed and a plateau phase was reached
within 4–5 days. This might be due to the formation of Dex aggregates
within the PCL scaffolds over time that results in limited release
of entrapped drug. Moreover, the amount of Dex required to induce
osteogenic differentiationwas not compatiblewith the standard concen-
tration used in the established osteogenic differentiation protocols. At
the same time, it was shown that high concentrations of Dex could
impair cell proliferation and trigger the upregulation of adipogenesis in
parallel with the osteogenesis (in vitro) [52]. Therefore, it is important
to tune Dex release rate from any carrier-device according to the strict
requirements to obtain an efficient osteogenesis, followed by a robust
mineralization.

Recently, Nguyen et al. fabricated Dex loaded poly(L-lactic acid)
(PLLA) nanofibrous scaffolds [49]. They also observed that the release
of Dex from these electrospun fibers induces differentiation of hMSCs
Please cite this article as: A.K. Gaharwar, et al., Amphiphilic beads as depot
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over a period of 3 weeks. In a similar approach, Vacanti et al. entrapped
Dex within electrospun fibers of PLLA and PCL [50]. Entrapped Dex re-
leases from PCL scaffolds within 24 h, whereas from PLLA a sustained
delivery for longer time frame was observed. They also demonstrated
that the localized in vivo delivery of Dex evoked a less severe inflamma-
tory response when compared with only PCL or PLLA fibers.

Although, encapsulation of Dex in hydrophobic polymers such
as PCL and PLLA is described, to our knowledge the release of Dex
from amphiphilic polymers has not been reported. Amphiphilic block
polymers with tailored physical and chemical properties have shown
a controlled release profile and linear degradation characteristics that
can be used for a range of tissue engineering applications [34,53,54].
We hypothesize that entrapping Dex within bead-like depots in an
amphiphilic fibrillar scaffold will result in a sustained release profile
over longer duration. Among amphiphilic copolymers, random block
copolymers of poly(ethylene oxide) terephthalate and poly(butylene
terephthalate) (PEOT/PBT) have been extensively investigated due to
their bioactive characteristics [34,55,56]. By varying the molecular
weight and polymer composition, a wide range of PEOT/PBT copolymer
with the desired mechanical strength, hydration property, degradation
profiles and biological characteristics can be obtained [57]. The PEOT/
PBT copolymers are biodegradable and have been proposed for
osteochondral tissue engineering [58–60]. 3D scaffolds from PEOT/PBT
were fabricated by using 3D fiber deposition (3DF) and electrospinning
(ESP) and showed to enhance cartilage tissue formation [61]. Due to the
amphiphilic nature of PEOT/PBT, it is predicted that hydrophobic drugs
(such as Dex) can be entrapped within the polymeric structure and
sustained release profiles from the fibrillar structure can be obtained.
It is envisioned that such scaffold design can be used for a range of
musculoskeletal tissues engineering applications that require control
release of hydrophobic drugs to promote tissue regeneration.

In this study, electrospun scaffolds of PEOT/PBT containing different
loadings of Dexwere prepared. The surfacemorphologies of thesefibers
were examined by scanning electron microscopy (SEM). The entrap-
ment of Dex and in vitro release kinetics were investigated using
spectroscopic and chromatography techniques. The ability of the Dex
loaded fibers for controlling hMSC adhesion, proliferation and differen-
tiation on electrospun fibers was also investigated. We hypothesize
that hMSCs cultured on Dex releasing scaffolds will show enhanced
osteogenic differentiation compared to the direct infusion of Dex in a
medium. The proposed approach for directing cellular function by the
sustained release of a hydrophobic drug from amphiphilic fibrous
scaffolds can be used to engineer a range of biomimetic scaffold for
controlled drug delivery and regenerative medicine applications.
2. Experimental

2.1. Fabrication of PEOT/PBT electrospun scaffolds

PEOT/PBT was obtained from PolyVation B.V. (Groningen, The
Netherlands). The compositionused in this studywas 1000PEOT70PBT30
where, 1000 is the molecular weight in g/mol of the starting poly(ethyl-
ene glycol) (PEG) blocks used in the copolymerization, while 70 and 30
are the weight ratios of the PEOT and PBT blocks, respectively. PEOT is a
hydrophilic polymer that imparts elastomeric properties, whereas PBT
is a thermoplastic crystalline polymer and imparts stiffness to the copol-
ymeric network. Thefibrous scaffoldswere fabricated by ESP. First, PEOT/
PBT (20%w/v) was dissolved in a 9:1 ratio of anhydrous chloroform and
ethanol. ESP was carried out at 12.5 kV (Glassman High Voltage, INC)
using a 21G blunt needle and a flow rate of 2 mL/h. The collector was a
circular plate (diameter 6.5 cm) made of aluminum and maintained at
a constant distance of 18 cm from the needle. The electrospun scaffolds
were dried overnight in vacuum to remove the residual solvent. For the
preparation of theDex loaded PEOT/PBT scaffolds, the drugwas dissolved
in ethanol (10× the desired final concentration) and then dissolved in 9
s for sustained drug release integrated into fibrillar scaffolds, J. Control.
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parts of chloroform. PEOT/PBT solution containing 0.5, 1 and 2% of Dex
(wt/wt) was prepared. ESP was carried out as described above.
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2.2. Scanning electron microscopy

The size and morphologies of the electrospun fibers were evaluated
using a scanning electron microscope (JSM 5600LV, JEOL USA Inc., MA).
The fibers were allowed to dry in a desiccator for 24 h before imaging.
The scaffolds were coated with Au/Pd for 2 min using a Hummer 6.2
sputter coater (Ladd Research, Williston, VT). All images were captured
using 5 kV acceleration voltage and a working distance of 5–10 mm.
ImageJ software (National Institute of Health) was used to determine
the size of the fibers from the SEM micrographs. The diameter of at
least 50 fibers was measured from one image to determine the average
fiber diameter. The bead was excluded while determining the fiber
diameter of the electrospun fibers. The bead density was calculated
manually by counting the number of beads in an images and then divid-
ing it by the total area.
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2.3. Chemical characterization

Fourier transform infrared (FTIR) spectra of the samples were
recorded using an Alpha Bruker spectrometer. The average value of 48
scans at 4 cm−1 resolutions was collected for each sample. High-
performance liquid chromatography (HPLC) was performed to deter-
mine the presence of Dex in electrospun scaffolds. The Water 600
system consisted of an automatic sample injector (Waters 717) and a
UV absorbance detector (Waters 2487) set at 254 nm. The mobile
phase consisted of acetonitrile. The analytical column was (3.9 mm
× 300 mm, pore size 4 μm) (Millipore Corp, Waters, Milford, MA). The
flow rate was set at 1 mL/min. The retention time of Dex was 3.5 min,
and the total run time of HPLC analysis was 10min. The chromatograph
was analyzed by Empower Pro software (Waters). For release kinetics
studies, drug-loaded electrospun scaffolds (50 mg in 10 mL) were
suspended in PBS in a dialysis tube (MWCO = 3500 Dalton, Spectrum
Lab). The dialysis tube was then suspended in 50 mL PBS with gentle
stirring. At predetermined time intervals, 1 mL portion of PBS was col-
lected for quantification and replaced by equal volume of PBS, and the
release of Dex was quantified by HPLC. The thermal properties of scaf-
folds were investigated using differential scanning calorimetry (DSC).
The electrospun scaffold samples (3–5 mg in weight) were sealed in
an aluminum pan and were subjected to 2 heating/cooling cycles from
−70 °C to 100 °C at a heating rate of 10 °C/min under a constant flow
of nitrogen at 20 mL/min. Protein adsorption was determined using
micro bicinchoninic acid (micro BCA) protein assay reagent (Pierce
BCA, Thermo Scientific). Briefly, electrospun scaffolds were subjected
to 10% fetal bovine serum (FBS) at 37 °C in PBS for 24 h. Then samples
were washed 3 times in PBS to extract any non-specific adsorbed
proteins and were treated with a 2% SDS solution for 6 h in a shaker
(50 rpm) to extract the adsorbed proteins. The supernatantwas collect-
ed separately and was analyzed using the manufacturer's protocol.
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2.4. Mechanical properties

The mechanical properties of electrospun scaffold were evaluated
using uniaxial tensile test using an Instron 5943 Materials Testing Sys-
tem Capacity (Norwood, MA, USA) equipped with a 50 N load cell. The
samples were cut into rectangular shapes that were 10 mm long,
5 mm wide and approximately 100–150 μm thick. The samples were
stretched until failure at the crosshead speed of 10 mm/min. The elastic
modulus was calculated from the linear stress–strain region by fitting a
straight line between 5 and 20% strain. The ultimate tensile stress and
failure strain were also calculated.
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2.5. In vitro cell culture studies

Bone marrow-derived hMSCs (PT-2501, Lonza) were cultured in
normal growth media (a-MEM, containing 10% of heat-inactivated
fetal bovine serum (HiFBS, Gibco, USA) and 1% Pen/Strep (penicillin/
streptomycin, 100U/100 μg/mL, Gibco, USA)) at 37 °C, in a humidified
atmosphere with 5% CO2. Prior to cell seeding, the electrospun scaffolds
were sterilized using ethanol for 30 s before cell seeding, followed by
thorough washing with PBS. The cells were cultured until 70–75% con-
fluence and were used before passage 4 for all the experiments. The
cells were trypsinized (CC-3232) and seeded on electrospun scaffolds
(1 × 1 cm2) at the density of 20,000 cells/scaffold in normal growth
media. After 24 h, the electrospun PEOT/PBT scaffold was subjected to
growth media (−Dex) and osteogenic media (+Dex), as negative and
positive control, respectively.Whereas, electrospun scaffolds containing
Dex were subjected to media (−Dex) to evaluate the effect of released
Dex from the electrospun scaffolds on the hMSC differentiation.

Cell proliferation over 21 days of culturewas evaluated usingAlamar
Blue Assay (Invitrogen) following the standard manufacturer protocol.
ALP activity was quantified using Alkaline Phosphatase Colorimetric
Assay Kit (Abcam, ab83369). The ALP enzyme in cell lysate converts p-
nitrophenol phosphate (pNPP) (present in kit) to yellow p-nitrophenol
(pNP) that can be easily detected using colorimetric assay. Briefly,
samples and the assay buffer solution (5 mM pNPP) were added to a
96-well plate. After 1 h of incubation, the absorbance was read at
405 nm using a microplate reader (Epoch microplate reader, Biotek,
USA). A standard curve was made from standards (0–20 μM) prepared
with a pNPP solution. The samples and standard were analyzed and
sample concentrations were read from the standard curve (n = 3). To
detect the expression of ALP, nitro-blue tetrazolium/indolylphosphate
(NBT/BCIP) (Thermo Scientific) staining was also performed. Before
staining, the cells were washed with PBS, 0.5 mL of NBT/BCIP was
added and then the samples were incubated at 37 °C in a humidified
chamber containing 5% CO2. After 30 min, the samples were washed
with PBS and fixed with 4% paraformaldehyde for imaging. The optical
images of stained scaffold were obtained using Zeiss Axio Observer Z1
1 (AXIO1) equipped with a color camera (Evolve EMCCD 512 × 512
16 μm pixels).

2.6. Statistics

Experimental data were presented as mean± standard deviation
(n = 3 to 5). Statistical differences between the groups were
analyzed using one-way ANOVA with Tukey post-hoc analysis for
fiber analysis, mechanical testing and drug loading, and two-way
ANOVA for ALP analysis. Statistical significance was represented as
*p b 0.05, **p b 0.01, ***p b 0.001.

3. Results and discussion

Electrospun fibrous scaffolds are highly porous 3D network struc-
tures. The fibrous scaffolds were obtained by ESP of PEOT/PBT copoly-
mer (Fig. 1a). Dex-loaded beaded structures were obtained by mixing
PEOT/PBT with different amounts of Dex (0, 0.5, 1 and 2% wt/wt Dex
compared to the polymer) before the ESP process (Fig. 1b). The effect
of Dex on the chemical, structural and biological properties of the
PEOT/PBT electrospun scaffolds was evaluated.

3.1. Amphiphilic beads integrated into fibrillar scaffolds

Themorphology and size of electrospun fibers were examined using
a scanning electron microscope (Fig. 1c). ESP of PEOT/PBT resulted in
formation of uniform fiber size (2.15 ± 0.7 μm) with smooth surface
morphology. The addition of small amount of Dex (0.5%) resulted in
formation of beaded structures along the fiber. Moreover, a significant
decrease in fiber diameter was also observed due to addition of Dex.
s for sustained drug release integrated into fibrillar scaffolds, J. Control.
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For example, PEOT/PBT fibers have a mean diameter of 2.15 ± 0.77 μm
and the addition of 0.5, 1 and 2%Dex significantly decreases the fiber di-
ameter to 0.61 ± 0.20, 0.62 ± 0.21 and 0.51 ± 0.22 μm respectively
(Fig. 1d). However, with the addition of Dex, the number of beads with-
in the scaffold structure increased (Fig. 1e). This might be attributed to
an increase in the conductivity of polymeric solution due to the addition
of Dex. The number and size of beads were quantified using image anal-
ysis and results indicated that addition of theDex resulted in an increase
in the number of beads without significantly changing the beads
dimension.

The formation of beads due to addition of Dex highlights that these
beads can act as drug depots or reservoirs integrated with the
electrospun fibrous network. The entrapped drug from these depots
might release due to diffusion/degradation of fibers within a controlled
fashion and subsequently control cellular behavior and functionality. To
determine the location of drug within these fibrous structures, we
mixed Texas Red (a fluorescence molecule with similar molecular
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Fig. 1. Formation of electrospun beaded fibers. (a) A schematic showing the formation of electro
is listed. (c) The effect of Dex on fiber diameter and morphology was evaluated using SEM. ES
amount of Dex results in fibers with smaller diameters and beaded structures. (d) The box plo
represent 25th and 75th percentile respectively, while whiskers represent min–max value of
of beaded structures. The data represents mean ± standard deviation. (One-way ANOVA with
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weight as Dex)with PEOT/PBT solution and fabricated electrospun scaf-
folds loaded with Texas Red. The microstructure analysis showed that
the addition of this fluorescence dye instead of Dex did not result in
change in fibermorphology or the formation of beaded structure. By ob-
serving these beaded structures under fluorescence microscope, the lo-
cation of dye within the fibrous structure was determined. Fig. 2a
showed that the entrapped dye is mainly located within the beaded
structure, hence predicting the distribution of Dex analog within the
beaded units of the fibers. This indicates that the beaded structures ef-
fectively act as reservoirs of the dye or drugmolecule. Thus it can be ex-
pected thatwhenDex ismixedwith PEOT/PBT itmight get accumulated
within these beaded structure (depots) and these depots were
integrated within PEOT/PBT fibrillar scaffolds.

The effect of the addition of Dex on the thermal and mechanical
properties of electrospun fibers was also investigated using differential
scanning calorimetry (DSC) and uniaxial tensile test, respectively. The
thermal analysis of electrospun fiber indicated no effect on the melting
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spun scaffolds by combining PEOT/PBTwith Dex. (b) The composition of electrospunfibers
P of PEOT/PBT shows the formation of smooth and uniform fibers. The addition of a small
t representing distribution of fiber diameter is shown; the top and the bottom of the box
the fiber diameter (n = 60). (e) The addition of Dex results in an increase in the number
Tukey post-hoc, *p b 0.05, **p b 0.01, and ***p b 0.001).
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temperature (Tm)of PEOT/PBTdue to addition ofDex (Fig. 2b). Thismight
be due to a very lowamount ofDexwithin electrospun scaffold compared
to the amount of polymer. The addition of Dex resulted in a significant
decrease in elastic modulus, ultimate tensile strength and elongation of
electrospunfibers (Fig. 2c). This ismainly attributed to the correspondent
decrease in the fiber diameter due to the addition of Dex.

3.2. Sustained release of Dex from beaded fibrillar scaffolds

Incorporation of Dexwithin PEOT/PBT scaffolds was evaluated using
high-performance liquid chromatography (HPLC) and Fourier trans-
form infrared spectroscopy (FTIR) (Fig. 3). The retention time of PEOT/
PBT was 3.5 min, and for Dex was 4.3 min. The electrospun fiber con-
taining 2% Dex show peaks for both PEOT/PBT and Dex as shown in
Fig. 3a. The loading efficiency of Dexwas also investigated by dissolving
the electrospun fiber. The results indicated that (Fig. 3b) PEOT/PBT fi-
bers with 0.5, 1 and 2% Dex have loading of 2.1 ± 0.8, 8.3 ± 6.1 and
17.6± 9.3 μg of Dex/mg of PEOT/PBT, respectively. The loading efficien-
cy of Dex in PEOT/PBT fiberswith 0.5, 1 and 2%Dexwas 42± 16%, 83±
61%, and 88 ± 46.5%, respectively. The loading efficiency was lower
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compared to the theoretical value and this might be attributed to the
loss of Dex during the ESP process. Similar results were obtained for
the other types of drug during ESP [48].

The presence of Dex within the electrospun fibers was further veri-
fied by FTIR and the spectra from Dex only, PEOT/PBT only and Dex
loaded PEOT/PBT are shown in (Fig. 3c). A characteristic peak at
1660 cm−1 was observed in the loaded electrospun scaffold indicating
the presence of Dex within the scaffolds. This observation is consistent
with earlier studies that reported the entrapment of Dex within
electrospunfibers [48]. The bioactive agents, such asDex, need to be de-
livered over a long period of time, within a controlled and systematic
fashion, to direct stem cells into desired lineages and promote the
formation of functional tissues [62]. The next generation of intelligent
tissue engineered scaffolds should not only facilitate cell adhesion,
spreading and proliferation, but should also direct cellular components
to synthesize ECM and perform according to the desired application,
contributing to the acquisition of biological performance and function.
The integration of instructive cues within tissue-engineered constructs
will allow a better control with less manipulations of the whole system
compared to the polymeric scaffolds.
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Considering the above, the integration of Dex release feature within
the PEOT/PBT electrospun template, enables the development of a scaf-
fold that can facilitate favorable cellular responses. Nevertheless, the re-
lease of drug/bioactive molecules from polymeric scaffold depends on
various factors such as microstructure of scaffold, polymer composition,
polymer hydrophilicity, drug loading capacity, degradation characteris-
tic and polymer/drug interactions [63]. Thus, an ideal scaffold should
have sustained release of the entrapped drug to direct the differentia-
tion of cells.Moreover, it is also expected that the scaffold should be bio-
degradable and have high porosity to promote cell migration and
diffusion of nutrients and waste products. Compared to a bulk polymer
scaffold, electrospun scaffolds have a faster drug release characteristic
due to a larger surface area [17]. Moreover, the interaction between
polymer and water also plays an important role in drug loading and re-
lease profiles. Previous studies reported that compared to hydrophobic
or hydrophilic polymers, amphiphilic polymers have higher drug load-
ing and drug stability [64,65]. For example, hydrophilic drugs have
limited solubility in hydrophobic polymers and vice versa. Whereas,
amphiphilic polymers can strongly interact with many different types
of drugs and proteins and can entrap themwithin their polymeric struc-
ture [64,65].
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Dex was entrapped within the fibrous scaffold by blend ESP. The
in vitro release of Dex from the electrospun scaffold containing 2% Dex
was monitored over a period of 28 days (Fig. 3d). Within the first 24 h
a small burst release (~20%) of drug was observed. This initial burst
may be due to localization of drug near the fiber surface. After the initial
burst release, a sustained release of Dexwas observed over the course of
28 days, compatible with the concentrations that are usually employed
during standard osteogenic differentiation protocols (10−8 M). For ex-
ample, each scaffold for in vitro experiments was approximately
2–3 μg in weight and 500 μl of media was used for the in vitro study.
The scaffold containing 2% Dexwill have ~46.8± 6.3 ng of Dex. Accord-
ing to the release profile and ignoring the burst release that corresponds
to 20% of loaded Dex, 40% of Dex was released over the period of
28 days. For PEOT/PBT (2% Dex), the 40% of the entire payload corre-
sponds to 18.72 ± 2.52 ng of Dex that was released over the period of
28 days. On other hand, if we subject the cells to a constant Dex conc.
of 10−8 M (1.962 ng/500 μl of media) for 28 days and change the
media every 3 days, then we will be using ~17.658 ng of Dex. For
PEOT/PBT scaffolds containing 0.5% and 1% Dex, the cumulative release
of Dex is much lower compared to the concentrations that are usually
employed during osteogenic differentiation.
E
D
 P

R
O

Dex PEOT/PBT/2Dex

PEOT/PBT

Dex

PEOT/PBT/2Dex

c

The Dex peak appears at 4.2 min, whereas the PEOT/PBT peak appears around 3.3 min in
PBT/2Dex have a peak for both polymer and Dex indicating successful entrapment of drug
by dissolving the electrospun scaffold. The results indicate high entrapment efficiency of

so confirmed by FTIR that shows a peak at 1660 cm−1. (d) The release of Dex from the
ex released from the scaffold is normalized to total Dex loading (empirically determined).
ase. The release kinetic data correlatewith the Korsmeyer–Peppasmodel of drug diffusion
e, as thediffusion coefficient (n) is 0.33. The data representsmean± standarddeviation (n
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The sustained release of Dex from PEOT/PBT scaffolds can be mainly
attributed to drug diffusion or polymer degradation, or combination of
both. Earlier studies indicate that the PEOT/PBT copolymer used in this
study starts to degrade by hydrolysis after few days and complete
in vivo degradation occurs over a period of 1 year [66]. Moreover, due
to the amphiphilic nature of the polymer, solvent driven diffusion of
the drug is expected. To determine the mechanism of Dex release
from PEOT/PBT fibers, the release kinetic data was fitted to the
Korsmeyer–Peppas model (Mt/M∞ = Ktn). Where “Mt/M∞” is the frac-
tion of Dex diffused at time “t”, “K” is the diffusion rate constant and
“n” is the diffusion exponent. The experimental data were plotted as
log (cumulative % drug release) versus log (time) as shown in Fig. 3d.
The result indicates that the value of “n” is 0.33, implying Fickian diffu-
sion of Dex from the electrospun PEOT/PBT fibrous matrix. Thus, we
believe that the sustained release of Dex is driven by diffusion of the
drug from the polymeric network.
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3.3. Effect of sustained release of Dex on hMSC adhesion and proliferation

hMSCs are clinically relevant cells due to their multipotent nature
and self-renewal ability [67,68]. hMSCs are in continuous and dynamic
interaction with the surrounding extracellular matrix that dictates
their behavior and functionality. Earlier studies have shown that cells
elongate along the fiber axis and cellular morphology plays an impor-
tant role in cellular behavior [34,69]. The interaction between hMSCs
and electrospun scaffolds was evaluated by monitoring hMSC adhesion
and proliferation on scaffolds. All the scaffolds allowed cellular adhesion
and proliferations, as well as the organization of the cell body on the fi-
bers. The cells were uniformly spread and elongated along the fiber axis
as determined bymicroscopic analysis and staining of the cells cytoskel-
eton (Fig. 4a). The fiber morphology plays an important role in initial
cell adhesion and spreading. It was observed that hMSCs readily at-
tached and spread on fibers with a smaller fiber diameter (PEOT/PBT
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dia. The data represents mean ± standard deviation (n = 3).
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with Dex) compared to PEOT/PBT. All the scaffolds show adsorption of
protein when subjected to 10% FBS (Fig. 4b). The amount of show
dependence on fiber morphology. Addition of Dex to PEOT/PBT results
in smaller fiber diameter and larger surface area; this might be attribut-
ed to the enhanced protein adsorption on the electrospun scaffolds
containing 2% Dex.

To investigate the effect of sustained release of Dex from PEOT/PBT
scaffolds onmetabolic activity, hMSCswere cultured in osteoconductive
(−Dex) and osteoinductive (+Dex) media. The osteoconductive
(−Dex) media contain β-glycerophosphate and ascorbic acid. This
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media formulation is able to support the functionality of osteoblast-like
cells, mainly their ability to deposit matrix that will further be mineral-
ized. The osteoinductive (+Dex) media contain β-glycerophosphate,
ascorbic acid and dexamethasone. The addition of Dex (10−8 M) will
provide the biochemical trigger towards the series of biochemical events
that orchestrate the osteogenic differentiation. Within the scope of the
study, the PEOT/PBT in (−Dex) media was used as negative control
and PEOT/PBT in (+Dex) media was used as positive control.

During osteogenic differentiation, the metabolic activity of cells
posses a temporal component. During the first stage, the cells have an
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e the effect of Dex release on the ALP activity of hMSCs. (a) hMSCs stained for surface
affold can be observed, suggesting that the differentiation occurs in a homogeneous
e period of 28 days. The ALP activity profile along time presents a bell shape pattern,
was observed on day 3. On day 7 and 14, scaffold-containing Dex shows significantly
1% Dex shows highest ALP activity; followed by a sharp decrease, until day 28. This
ins the osteogenic differentiation of stem cells. The bars represent mean ± standard
0.001).
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increased proliferation rate that is followed by a decrease, due to the
switch of metabolism towards the osteogenic cellular commitment
and maturation [48–50]. The metabolic activity of hMSCs cultured on
electrospun PEOT/PBT scaffolds, monitored using Alamar Blue assay, is
depicted in Fig. 4c. The metabolic activity of hMSCs cultured on the
different experimental subsets shows a typical bell-shape pattern, con-
sistentwith the hypothesis mentioned above. A significant difference in
the metabolic activity of hMSCs seeded on PEOT/PBT cultured in the
absence and presence of Dex. The suppression of metabolic activity in
PEOT/PBT (+Dex) compared to PEOT/PBT (−Dex) is mainly attributed
to the osteogenic differentiation of hMSCs. Due to the addition of Dex to
the PEOT/PBT scaffolds change in metabolic activity on Day 7 was
observed. At lower Dex concentration (PEOT/PBT/0.5Dex) a significant
increase in metabolic activity was observed. It might be possible that
U
N
C
O

R
R
E
C
T

P
E

O
T/

P
B

T
P

E
O

T/
P

B
T

0.
5%

 D
ex

 
1%

 D
ex

 
2%

 D
ex

 

Day 7 Day 14

(-
D

ex
) 

M
ed

ia
(+

D
ex

) 
M

ed
ia

a

b

PEOT/PBT 0.5% Dex
0

20

40

60

80

100

120

DAY 7
DAY 14
DAY 21
DAY 28

(-Dex) Media

M
in

er
al

iz
at

io
n

 M
at

ri
x 

A
re

a 
(%

)

Fig. 6. Effect of Dex on production of themineralizedmatrix. Alizarin Redwas used to stain inor
PBT cultured in (−Dex)media does not show anymineralizedmatrix indicating no spontaneou
of the mineralized matrix indicating production of the mineralized matrix by seeded hMSCs ac
the production of the mineralized matrix. (b) The image quantification indicates that scaffold
compared to the positive control PEOT/PBT in (+Dex) media. The data represents mean ± sta

Please cite this article as: A.K. Gaharwar, et al., Amphiphilic beads as depot
Release (2014), http://dx.doi.org/10.1016/j.jconrel.2014.04.035
topography (smaller fiber diameter) might be responsible for the
enhanced metabolic activity. As the amount of Dex is increased, the
metabolic activity of hMSCs decreased (Day 7) to the negative control
(PEOT/PBT(−Dex)). Taken together, these results highlight that
PEOT/PBT electrospun scaffolds support hMSC adhesion, spreading
and proliferation—primary requirements to promote relevant biological
behaviors in tissue engineering.

3.4. Effect of sustained release of Dex on osteogenic differentiation of hMSCs

The differentiation of hMSCs seeded on fibrous scaffold was investi-
gated bymonitoring ALP activity over the course of 28 days (Fig. 5a and
b). ALP is a mid stage checkpoint for the osteogenic differentiation,
whose expression profile follows a temporal coordinate. The increase
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ganic calcium deposition to identify production of themineralizedmatrix by hMSCs. PEOT/
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ting as positive control. The addition of Dex to polymeric scaffolds significantly enhances
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ndard deviation (n = 3).
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of ALP activity normalized to the number of cells, until reaching a
“peak”, is accompanied by the matrix production. The decrease in the
ALP activity corresponds to the formation of mineral nucleation sites
that consist of inorganic calcium.

For the scaffoldswithout Dex, in (−Dex)media, a residual ALP activ-
ity was observed, that was kept constant during the experimental time
frame (Fig. 5b). However, with the increase of the Dex loading, and
therefore, with the increase of the released drug, an increase in the
ALP activity can be observed starting day 7, until reaching a maximum
value at day 14. At this time point, significantly higher ALP activity of
hMSCs was observed on fibrous scaffolds containing 1% and 2% Dex,
when compared with the positive control (PEOT/PBT in (+Dex)
media). The scaffolds containing 0.5% and 2% Dex showed ALP activity
similar to the positive control, indicating that the Dex release from the
scaffolds can trigger and sustain the commitment of hMSCs towards os-
teogenic differentiation. This also indicates that the rate of Dex release
from scaffolds has a similar or enhanced influence on up-regulation of
ALP activity when hMSCs are subjected to a continuous and constant
level of Dex. The distribution of ALP activity between cells is evenly dis-
tributed, highlighting that the differentiation is taking place uniformly,
as shown by the specific staining for ALP (Fig. 5a).

To further evaluate the effect of Dex release on the differentiation of
hMSC, the extent of the production of a mineralized matrix was evalu-
ated, by the Alizarin Red staining [70]. The mineralized matrix consists
of calcium deposits, and underlines the osteoblast-like cells functional-
ity acquired by the differentiated hMSCs. This end-point is the hallmark
of complete stabilization and maturation of the differentiated cells.
Fig. 6 indicates that PEOT/PBT scaffolds without Dex (negative control)
did not induce osteogenic differentiation of hMSCs, whereas PEOT/PBT
scaffolds subjected to (+Dex) (positive control) facilitate the formation
of mineralized matrix. We further quantified the amount of the miner-
alized matrix by analyzing the area of the stained region (Fig. 6b). The
results correlated well with the ALP activity of hMSCs and the scaffold
containing 1% Dex showed the highest area fraction of stained region
compared to all other scaffolds, whereas scaffolds containing 0.5 and
2% Dex have similar mineralized area fractions similar to the positive
control.

4. Conclusions

We introduce electrospun scaffolds with a beaded structure as drug
reservoirs for tissue engineering applications. Dexamethasone, as a
model drug,was encapsulatedwithin PEOT/PBTmulti-block amphiphil-
ic copolymer and the effect of drug entrapment was investigated on
some of the physical, chemical and biological properties. The sustained
release of Dex from the beaded structure was observed over the course
of 21 days. The effect of the initial drug loads and the subsequent
sustained release of Dex on human bone marrow stem cell differentia-
tionwere also investigated. The fibrous scaffolds containing Dex upreg-
ulate ALP activity and facilitate the formation of themineralizedmatrix,
without the addition of Dex in the culture medium. The electrospun
scaffolds with a beaded fibrous structure can potentially be used to
deliver bioactive agents for regenerative medicine within a controlled
and continuous fashion.
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