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There is a bright future in the development and utilization of

nanoscale systems based on intelligent materials that can

respond to external input providing a beneficial function.

Specific functional groups can be incorporated into polymers

to make them responsive to environmental stimuli such as pH,

temperature, or varying concentrations of biomolecules. The

fusion of such ‘intelligent’ biomaterials with nanotechnology

has led to the development of powerful therapeutic and

diagnostic platforms. For example, targeted release of proteins

and chemotherapeutic drugs has been achieved using pH-

responsive nanocarriers while biosensors with ultra-trace

detection limits are being made using nanoscale, molecularly

imprinted polymers. The efficacy of therapeutics and the

sensitivity of diagnostic platforms will continue to progress as

unique combinations of responsive polymers and

nanomaterials emerge.
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Introduction
Inspiration for the development of intelligent polymers is

often drawn from nature. Almost all biological processes

are triggered by local variations in pH, temperature, or

analyte concentration. Biomolecules are able to respond

to their environment because they have functional

groups that participate in combinations of non-covalent
www.sciencedirect.com 
interactions. Through rational chemical synthesis, scien-

tists can capture the responsive essence of biomolecules

in synthetic materials. The ability to fabricate these

materials at the nanoscale allows further manipulation

of their properties and brings them to a size that is

more clinically relevant than bulk materials [1��,2,3�].
The responsive character of these nanomaterials can be

exploited for a number of applications, including con-

trolled delivery of therapeutics or molecular recognition

for sensing applications (Figure 1) [4,5].

Along with the ability to respond to external stimuli, the

small size itself imparts unique characteristics to nano-

materials, and thus it is our belief that such nanomaterials

will be used in a large number of chemical and biomedical

engineering applications. They are ideal transducing

elements for translation of a chemical, physical or mech-

anical input to a beneficial output. In the simplest

possible system, the relationship between input and

output is a linear function. Yet, this linearity is almost

never achieved for polymers due to the viscoelastic nature

of macromolecular systems, which calls for a non-linear

response. However, as the dimension of the material

approaches the nanoscale, the response approaches line-

arity. Additionally, materials have unique physical prop-

erties at the nanoscale because of quantum confinement

and surface effects, offering improvements in detection

applications [6].

There are also distinct biological responses to materials

that have been fabricated at the nanoscale. For example,

several transport processes in the body are size depend-

ent, with many that are exclusive to materials lower than

100 nm in diameter [7,8�]. Furthermore, nano-patterning

on substrates can control protein adhesion and cell

spreading behavior because nanoscale features emulate

those present in a cell’s native extracellular matrix [9].

The marriage of stimuli-responsive and nanosized

materials has resulted in brilliant materials with tremen-

dous potential in medical applications. Here we underline

some impressive research from recent years and offer our

scientific opinion on the promising future of intelligent

biomaterials in nanomedicine.

Stimuli-responsive materials
The capability of systems to selectively target diseased

tissues and intelligently respond to physiological changes

helps provide rapid treatment without systemic side

effects [10��]. There are a large number of explored

stimuli-responsive systems that include pH, temperature,
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Schematic depiction of input-driven responses of intelligent nanomaterials. (Top) Intelligent polymeric nanoparticles swell in response to changes in

temperature or pH, resulting in the release of therapeutic agents. (Bottom) Nanoparticles with a molecularly imprinted shell recognize target molecules,

producing a detectable signal for sensing applications.
light, magnetic fields, and molecule specific interactions.

The most widely studied include pH and temperature

and are the main focus of present developments and new

systems. Gradients of pH exist between organs, cancerous

tissue, and intracellular compartments, allowing pH

responsive systems to target areas based on intrinsic

properties rather than external triggering. The relevant

nanomaterials, triggered by a pH change, undergo swel-

ling, dissociation, or changes in surface charge to elicit a

desired action whether for drug delivery, sensing, or other

applications.

pH-responsive systems for transmucosal drug delivery

pH-responsive systems are major components of new

devices for detection of external changes in pH, leading

to associated thermodynamic, mechanical or morphologi-

cal changes. The ensuing dimensional changes are often

associated with increased hydraulic or osmotic pressure

leading to the intelligent response. Of particular interest

and promise for additional future uses we find pH-respon-

sive polymers, and especially hydrogels, applicable to

drug, peptide, or protein release in the nasal, buccal,

sublingual, gastrointestinal, or vaginal areas. The pH

transitions in these areas have often been utilized for

drug delivery to protect them from damaging conditions

and release molecules in the right location as seen in

Figure 2 for both oral and intratumoral delivery. These

systems often involve hydrophilic polymer networks that

remain complexed at low pH but swell at the neutral pH

of the intestine. The mechanism by which nanoparticle

hydrogels undergo swelling is well understood and is

dependent on the type of pendant groups present on
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the polymer backbone. A thorough review of hydrogels,

swelling behavior, and their applications in medicine is

beyond the scope of this article, but we note here such

reviews that describe their fundamental behavior

[11��,12]. Briefly, ionization of weakly acidic (e.g., car-

boxylic acids) or basic (e.g., amines) pendant groups

changes with pH, producing an osmotic gradient between

the interior and exterior of the gel causing water to be

imbibed or expelled. Networks containing acidic groups

swell with increasing pH, as they are deprotonated, while

basic groups swell with decreasing pH as depicted by the

solid and dashed lines in Figure 2A, respectively [13,14].

While oral delivery is acceptable for certain compounds,

other degradable therapeutics, in particular proteins such

as insulin and calcitonin, must be protected from the low

pH and digestive enzymes of the stomach before being

released in the more neutral pH of the intestine. In the

past 20 years, numerous technologies have been proposed

and used in such applications. These systems include

swollen crosslinked polymeric networks (hydrogels) con-

taining acrylic acid, methacrylic acid, 2-(diethyl ami-

no)ethyl methacrylate, and related anionic and cationic

polymers.

We find hydrogel microparticles and nanoparticles of

poly(methacrylic acid)-grafted-poly(ethylene glycol)

and poly(methacrylic acid-co-N-vinylpyrrolidone) as

promising carriers that have demonstrated an intestinally

relevant pH swelling response for proteins by forming a

complex at low pH and swelling at higher pH [15]. With

rational selection of the monomer units, molar feed ratios,
www.sciencedirect.com
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Typical nanoparticle pH size response and drug release for delivery applications. (a) A typical pH response curve for nanoparticle size or swelling ratio

for both oral drug delivery (solid line) and tumor targeting (dashed line). These systems undergo significant change in physiological ranges near neutral

pH. (b) Time release profiles for a typical oral drug delivery system in different pH solutions.
and crosslinking density, both low and high molecular

weight proteins like insulin, calcitonin, and growth hor-

mone were delivered and the kinetics modified [16,17�].
Schoener et al. investigated two systems that improved

the loading and release of hydrophobic drugs like che-

motherapeutics by including an interpenetrating network

of hydrophobic poly(n-butyl acrylate) [18]. Alternatively,

they also encapsulated hydrophobic poly(methyl metha-

crylate) nanoparticles into the pH-responsive hydrophilic

networks [19].

pH-responsive materials in cancer therapy

Another developing area of interest for pH-responsive

nanoparticles lies in the detection and treatment of can-

cer. Tumors have an acidic extracellular environment due

to their high metabolic rates and hypoxic environment

that result in ATP hydrolysis and lactic acid production

[20]. pH-responsive systems can increase drug concen-

tration at the tumor while limiting exposure to healthy

tissues. Again, for a more extensive review of cancer

biology and applications of nanoparticles for treatment

consult [21��,22,23�].

One approach is to load drug into the hydrophobic core of

block copolymer micelles with that segment containing

the pH-sensitive copolymer poly(b-amino esters) [24].

Due to protonation at low pH, this segment has higher

hydrophilicity resulting in an increased release rate of

hydrophobic doxorubicin. Another chemotherapeutic,

paclitaxel, was loaded into acetylated cyclodextrin nano-

particles that undergo hydrolysis at a slightly acidic pH of

5, but not at 7.4, and consequently showed improved

cytotoxicity to tumors in a mouse model over solubilized

paclitaxel [25]. In this instance, the pH-sensitivity works
www.sciencedirect.com 
in the researchers’ favor for both release at the tumor

tissue and for those particles endocytosed by tumor cells.

The drug loaded nanoparticles showed improved cyto-

toxity to multidrug resistant cancer cell lines likely due to

the nanoparticles release of paclitaxel within the low pH

of the endosome and thus overcoming the P-glycoprotein

efflux pump.

A novel approach for the delivery of proteins into cells for

cancer therapy and other applications involved the syn-

thesis of a thin, pH-sensitive polymeric coating around

single proteins. First, vinyl groups were covalently

attached to the protein and then polymerized with mono-

mers 2-diethylaminoethyl methacrylate and acrylamide

and degradable crosslinker glycerol dimethacrylate.

Nanoparticle size and surface charge could be modified

by varying monomer ratios. The resulting thin polymer

shell protected proteins from proteolysis and increased

uptake compared to cell penetrating peptide conjugated

proteins. The shell degraded within the endosome to

release a functional protein [26��].

Recently there has been increased interest in using recom-

binant synthesis to construct delivery vehicles from

proteins or DNA. Recombinant synthesis allows very

specific structure, functionality, and nearly identical size

distribution of particles, in addition to natural degradation

byproducts. For example, the dihydrolipolyl acyltrans-

ferase subunit (E2) of pyruvate dehydrogenase forms a

hollow 25 nm dodecahedral protein cage. The protein

complex has been modified to allow conjugation of

molecules both within the interior for delivery and exter-

nally for targeting. Researchers added pH-sensitivity to the

subunit-subunit interactions by adding histidine at an
Current Opinion in Chemical Engineering 2014, 4:105–113
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interface. At low pH the histidines are protonated and

charge repulsion reduces the stability of the cage [27].

When the interior of the cage was modified with cysteines

for doxorubicin conjugation, researchers observed accumu-

lation in the endosomes as required for pH-responsive

release and subsequent cytotoxicity of MDA-MB-231

human breast cancer cells [28�].

We believe that efforts in this field will increase in the

years to come with design of advanced nanoparticulate

systems that will be targeted to specific sites and uptaken

by cells to provide therapeutic conditions [29,30�]. Of

course, other authors have pointed out some of the short-

comings of nanoscale systems for treatment of certain

types of cancers [31�,32].

pH-responsive materials for imaging and sensing

Responsive systems have found new applications in ther-

anostics, an emerging field that combines intelligent

behavior, recognitive characteristics, imaging capabilities,

and therapeutic advantages [33]. Theranostic carriers

have key components such as targeting moieties, thera-

peutic agents, noninvasive imaging components, and

polymer carriers including conjugates that provide desir-

able drug delivery windows [34��].

The identification of diseased tissues has benefited from

pH-responsive nanosystems as well. Researchers devel-

oped a diblock copolymer micelle with the pH-responsive

element, poly(b-amino ester), at the core containing

hydrophobic Fe3O4 nanoparticles. The tertiary amine

groups switch the element from hydrophobic to hydro-

philic by protonation in an acidic environment releasing

the magnetic nanoparticles at both tumor and ischemic

tissue [35]. The researchers then modified the system to

include amido amines to increase resistance to hydrolysis

and further investigated its use for imaging cerebral

ischemia in a diseased rat model. They observed changes

in MRI images indicating gradual accumulation of Fe3O4

particles in the damaged area [36]. Wu et al. synthesized a

pH-sensitive poly(ethylene glycol-co-methacrylic acid)

hydrogel synthesized around an Ag coated Ni magnetic

core nanoparticle. They utilized the pH response of

poly(ethylene glycol-co-methacrylic acid) to increase

both accumulation and photoluminescence at low pH

[37]. The particles swell at higher pH, inhibiting diffusion

and thus slowing accumulation rate as compared to low

pH. Other exciting systems combine functionalities. Guo

et al. coated superparamagnetic Fe3O4 cores with a pH-

responsive polymer shell to use as an MRI contrast agent

for live particle tracking and diagnostics. When proto-

nated at low pH, this system releases hydrophobic adria-

mycin. Additionally, by adding folate to the nanoparticle

they are able to preferentially target tumor cells. By

combining functionalities this system can image tumor

tissue, deliver drug, and allow evaluation of the nanopar-

ticles’ targeting efficacy [38].
Current Opinion in Chemical Engineering 2014, 4:105–113 
Nanoscale sensors can respond rapidly to changes in their

environment and be utilized in new ways due to their

small size. Lee et al. synthesized nanorods and nano-

spheres capable of ratiometric sensing over a physiologi-

cally relevant range using a chromophoric crosslinker in

shell-crosslinked knedel-like nanoparticles [39]. Another

ratiometric polyurethane nanogel system utilized fluor-

escence resonance energy transfer (FRET) of the encap-

sulated fluorophores coumarin 6 (C6) and Nile Red in the

presence of bromothymol blue (BTB). BTB undergoes

an absorption spectra shift that overlaps with C6 and

Nile Red emission at low and high pH, respectively

[40]. Another sensor involves pH-responsive hydrogels

polymerized on top of silicon microcantilevers. As the

hydrogel swelled with increasing pH it caused a deflec-

tion of the beam that was measured optically with high

sensitivity [41].

Temperature responsive materials

As mentioned previously, pH-responsive materials have

gained the most attention but other systems use tempera-

ture change as a stimulus, usually for drug delivery. Gold

nanoparticles coated with a thermally responsive inter-

penetrating network of polyacrylamide and poly(acrylic

acid) showed a strong swelling response to temperature.

These could be useful for drug delivery through external

triggering by local temperature increases from laser heat-

ing [42]. Introducing local hyperthermia to trigger a

targeted response has repeatedly shown promise, in-

cluding in vivo. Temperature sensitive liposomes (TSLs)

have received particular interest due to a melting

temperature of 39–428C that can be achieved with mild

hyperthermia [43]. TSLs can dose heated tumor tissue

with 7.6 fold greater concentrations of doxorubicin than

freely administered drug while also administering it more

evenly through the tumor tissue including the core [44].

Other researchers used TSLs to encapsulate the MRI

contrast agent [Gd(HPDO3A)(H2O)] with doxorubicin to

enable imaging and quantitative analysis of the drug

released [43].

Temperature responsive poly(N-isopropylacrylamide)

(PNIPAAm) polymers have been used as micromolds

for several applications. In one application, the molds

allow cell aggregates to be retrieved with higher effi-

ciency than PEG molds by decreasing the temperature

from 378C to 248C with the resulting swelling effectively

pushing the aggregates out of the well [45]. The molds’

shape change at two temperatures also permits a sequen-

tial molding step allowing new spatial orientations like

cylinders and cubes that contain two compartments.

These compartments can encapsulate different com-

pounds or cells within each layer making it a useful tool

for drug delivery or tissue engineering. Additionally

the molds enable the use of a wider range of polymers

than photolithography which requires photoreactive

crosslinkers [46].
www.sciencedirect.com
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Materials capable of molecular recognition
Synthetic materials with recognition characteristics are

another popular subset of intelligent biomaterials. Mole-

cularly imprinted polymers (MIPs) are polymers capable

of selective recognition of a target molecule. The recog-

nition properties of MIPs are achieved by selecting

monomers with functional groups complementary to

those on the surface of a target molecule. Polymerization

is carried out in the presence of the target molecule (i.e.,

template), which is subsequently washed out, leaving

cavities that are complementary to the template in both

shape and functionality. In recent years, there has been a

remarkable increase in the number of studies that employ

MIPs [47]. Advances in the development of nanoscale

MIPs are reviewed in great detail elsewhere [48–50].

Many areas of medical research, including pharmaceutical

development, diagnostics, and therapeutics rely on sen-

sitive recognition elements, which are most often biomo-

lecules such as antibodies, enzymes, or nucleic acids. The

ease of production, chemical tunability, and relatively low

cost of MIPs has promoted their use in place of natural

biomolecules for such applications. This section will

highlight a small selection of exciting, recent studies

investigating the use of imprinted nanomaterials for

medical applications.

Pharmaceutical development

The biological activity of molecules is highly dependent

on their size, orientation, and functionality. Even enan-

tiomers can have significantly different biological activi-

ties and thus it is often necessary to quantify and separate

enantiomers during pharmaceutical development. For

example, malic acid (MA) is a chiral molecule, where

only the L-form is pharmaceutically useful. Prasad and

Pandey developed ultra-thin (i.e., 4.1 nm), enantioselec-

tive MIP films for MA on the gold surface of a quartz-

crystal microbalance (QCM). Even in complex media

such as serum, the MIP-modified QCM sensors could

selectively recognize their target enantiomer, demon-

strating the ability of MIPs to imitate the recognition

sites of the natural MA receptor [51]. Another way to

exploit this receptor-mimicking characteristic of MIPs is

in ligand-based screening, where a known ligand is used

for imprinting and the resultant MIP is used to probe

binding affinity of other potential ligands. Lakka et al.
demonstrated this by imprinting polymers with a known

Hypoxia-Inducible Factor-1 (HIF-1) inhibitor, quercetin.

HIF-1 is a protein whose transcriptional activity is

increased in the hypoxic environment of tumors. By

incubating the MIPs with frankincense, a natural antic-

ancer remedy, they identified and isolated other bioactive

compounds that work as HIF-1 inhibitors [52].

Furthermore, coupling MIPs with carbon nanotubes is

extremely powerful for ultrasensitive electrochemical

detection of clinically relevant molecules, such as drugs.
www.sciencedirect.com 
Accurate and sensitive determination of drug levels in

biological and pharmaceutical samples is crucial for

assigning dosages that will maximize efficacy and mini-

mize side effects. Afkhami et al. developed a novel

electrochemical sensor capable of detecting sub-micro-

molar levels of tramadol, a centrally acting analgesic that

can be fatal if overdosed, in urine and in pharmaceutical

tablets for sample analysis purposes. A MIP for tramadol

was synthesized on the surface of silica-coated magnetite

nanoparticles. Then, carbon paste electrodes (CPE) were

modified with these MIP-nanoparticles and multi-walled

carbon nanotubes (MWCNTs). Compared to both a CPE

modified with NIP-MWCNT and an unmodified CPE,

the MIP-MWCNT CPE had the highest sensitivity [53].

Diagnostics

Sensors that combine nanomaterials and MIPs can also be

used for diagnostic applications. These sensors are prom-

ising alternatives to current diagnostic tests that often

have low specificity, insufficient detection limits, or

employ expensive, unstable biomolecules as the recog-

nition element. In a very recent study, Cai et al. synthes-

ized non-conductive, protein-imprinted polymers on the

tips of carbon nanotubes for electrochemical sensors. The

modified sensors discriminated between structurally

similar proteins, as well as between different confor-

mations of the same protein. The detection level was

around 10 pg/L, a value comparable to the sensitivity

seen with biomolecule-based nanosensors [54�].

Microfluidic paper-based analytical devices are leading

candidates for inexpensive, portable sensors for point-of-

care diagnostics. In particular, origami paper analytical

devices are gaining significant attention because of their

low cost and simplicity [55]. However, like most diag-

nostic tests, they rely on natural biomolecules for recog-

nition and/or signal transduction. Maintaining the

stability and activity of these molecules during fabrication

and transportation is challenging if not impossible. As an

alternative, lab-on-paper devices that utilize MIPs as the

recognition element have recently been explored for the

first time. Researchers fabricated a microfluidic electro-

analytical origami device capable of enantioselective,

nanomolar-level detection of D-glutamic acid, an excit-

atory neurotransmitter [56]. Brain damage can occur if

extracellular levels are elevated due to a central nervous

system disorder. These researchers also demonstrated the

use of a similar device for detection of heptachlor [57],

rendering MIP-based origami paper analytical devices

potentially useful for point-of-care diagnosis.

The application and success of MIPs in optical-based

nanosensors has also been shown. Quantum dots (QDs)

have unique optical properties that make them useful for

diagnostics and thus are a popular substrate choice for

surface imprinting. For example, in response to protein

binding, MIP-coated, Mn-doped ZnS QDs showed a
Current Opinion in Chemical Engineering 2014, 4:105–113
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Table 1

Reported detection limits of nanomaterial-based molecularly imprinted sensors

Sensor class Target molecule Detection limit (M) Reference

Gravimetric

Quartz crystal microbalance L-Malic acid 1.3E�9a [51]

Optical

QD phosphorescence Bovine hemoglobin 3.8E�8 [43]

LSPR spectroscopy Neutrophil gelatinase-associated lipocalin 1.3E�8 [45]

QD-MIP ELISA a-Amylase 7.0E�14a [44]

Electrochemical

Square wave voltammetry Tramadol 4E�9 [38]

Cyclic voltammetry and electrochemical impedance spectroscopy D-Glutamic acid 2E�10 [41]

Hepatochlor 8.0E�12 [42]

Electrochemical impedance spectroscopy HPV derived E7 protein 4.7E�14a [39]

Human ferritin 2.2E�17a

a Values reported in mass concentration converted here to molar concentration.
concentration dependent decrease in phosphorescence

activity [58]. Lee et al. also used MIP-QDs, but their

sensor took advantage of the fluorescent property of QDs

to replace fluorescently tagged antibodies in an ELISA-

type assay for detection of three target proteins [59].

Other popular nano-substrates for imprinting are noble

metal nanomaterials. Abbas et al. exploited the localized

surface plasmon resonance (LSPR) of gold nanorods to

sensitively detect protein biomarkers. By synthesizing

thin, biomarker-imprinted polymers on the nanorod

ends, concentration dependent shifts in the LSPR wave-

length were observed with a sensitivity of 0.25 nm/nM.

LSPR wavelength shifts due to non-specific adsorption

of competitor proteins were minimal (<1 nm) [60].

These studies have shown that inclusion of nanomater-

ials with unique properties can lead to MIP-based bio-

sensors with remarkably low detection limits, as

summarized in Table 1.

Immunology and therapeutics

As discussed in the previous section, stimuli responsive

nanomaterials are popular options for targeted delivery of

therapeutics. To this aim, Puoci et al. included carbon

nanotubes in microspheres that were imprinted with a

model drug. Upon electrical stimulus, the MIP particles

released the bound drug, a promising result for controlled

release therapeutics [61]. A more obvious route for treat-

ing diseases with MIP-based nanomaterials is an

immunological approach. Similar to how antibodies

recognize toxins or viruses, imprinted polymers can be

optimized to recognize these unwanted molecules. By

imprinting on the surface of gold nanoparticles and using

surface-enhanced Raman scattering, researchers were

able to recognize bisphenol A (BPA), an endocrine dis-

ruptor often used in the manufacturing of plastic packa-

ging. They described the recognition of BPA in the

context of chemical contamination in liquids, but this

idea could be extended to recognition of toxins in bio-

logical fluids as well [62].
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In a noteworthy study by Hoshino et al., imprinted particles

for melittin, the toxic peptide of bee venom, were syn-

thesized and optimized for maximum affinity. When deliv-

ered in vivo, the nanoparticles were able to bind melittin

before being recognized by macrophages as foreign

objects. The nanoparticles localized in and were cleared

by the liver, resulting in a 100% survival rate when the

optimized MIP composition was used [63��]. For the first

time, researchers have also demonstrated the ability to

imprint nanoparticle surfaces with whole viruses for use in

treating infectious diseases. When infected by phage sus-

pensions, bacterial cells had significantly improved growth

if treated with the imprinted particles as compared to no

treatment or treatment with non-imprinted particles [64].

Conclusions
In this short overview of recent developments we high-

lighted studies that are representative of current trends in

intelligent nanomaterials and their applications in medi-

cine. Advances in both chemical synthesis and nanofab-

rication techniques have fostered creative research in this

area. Imparting responsiveness to nanomaterials helps

achieve control over their behavior, which ultimately

leads to more effective therapeutic, imaging, and sensing

technologies. However, compared to the amount of

research being done in the field, relatively few medical

nanotechnologies have made it to the market. Clear

demonstrations of biocompatibility and including biode-

gradable components will make these materials even

more attractive for in vivo applications. Furthermore,

development and implementation of scalable, cost-effec-

tive fabrication techniques will help promote clinical

translation. Together, intelligent polymers and nanoma-

terials provide a versatile toolbox that we believe will

revolutionize the future of modern medicine.
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