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There has been a tremendous growth in the use of biomaterials

serving as cellular scaffolds for tissue engineering applications.

Recently, advanced material strategies have been developed

to incorporate structural, mechanical, and biochemical signals

that can interact with the cell and the in vivo environment in a

biologically specific manner. In this article, strategies such as

the use of composite materials and material processing

methods to better mimic the extracellular matrix, integration of

mechanical and topographical properties of materials in

scaffold design, and incorporation of biochemical cues such as

cytokines in tethered, soluble, or time-released forms are

presented. Finally, replication of the dynamic forces and

biochemical gradients of the in vivo cellular environment

through the use of microfluidics is highlighted.
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Introduction
In the engineering of tissues, a scaffold is often required

to provide an environment or niche that favors the natural

behavior of cells. This scaffold must fulfill a wide range of

requirements, from physical and biochemical to cellular

parameters [1,2]. These requirements have stemmed

from the notion that mimicking the extracellular environ-

ment—its structure, mechanical and biochemical proper-

ties—in designing cellular scaffolds, will coax cells to

behave in the same manner as their in vivo counterparts.

Engineering of such scaffolds requires close attentiveness

to several material design criteria: (i) the 3-dimensional
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(3D) micro-geometry within the scaffold including poros-

ity, pore size, and interpore connectivity to satisfy adequate

mass transfer of gases, nutrients, and waste as well as cell

attachment and spreading, and tissue formation; (ii) mech-

anical parameters such as linearity or non-linearity,

elasticity, viscoelasticity, or anisotropy that must be tai-

lored to the specific tissue in mind; and (iii) successful

delivery of biologics including cells, nucleic acids, and

cytokines. In this review, these three material design

criteria will be discussed, methods utilized to mimic the

in vivo cell microenvironment will be highlighted, and

recent research contributing to better bioactive scaffold

fabrication using advanced material strategies will be pre-

sented (Figure 1). Such materials can either directly alter

the cellular differentiation pathways or be used as permiss-

ive environments for approaches in which the cell pheno-

type is altered using ‘pathway engineering’ approaches. An

example of the latter approach is to develop advanced

materials that enable the generation of induced pluripotent

stem cells [3].

Creating the cellular scaffold
In choosing the material to be used for a scaffold, a wide

range of options exists—natural and synthetic materials,

and composites of two or more from the same class or

different classes of materials; the advantages and disad-

vantages of using that material must be known, in

addition to its suitability for the desired application.

Naturally-derived materials are often purified extracellu-

lar matrix (ECM) proteins (collagen, gelatin [4], laminin,

hyaluronic acid) or a mixture (Matrigel1). Other sources

may be from plant and animal constituents (silk, agarose,

chitosan). Alternatively, decellularized organs that retain

the ECM and architecture of tissues have been used to

engineer blood vessel [5], heart [6], lung [7�], liver [8], and

bone [9]. The advantages of natural materials are their

biological activity and biocompatibility. Synthetic

materials, on the contrary, overcome the disadvantages

posed by their natural counterparts—mainly, their man-

ufacturing and processing variability and inability to

control their physico-chemical properties. Additionally,

synthetic materials provide a blank slate with absence of

biological activity that may be modified through bio-

chemical means (discussed in ‘Biochemical modulation

of materials’ section) [10].

More often than expected, single-component materials do

not meet the requirements needed for a cellular scaffold. For

instance, they may lack the desired mechanical properties,

electrical activity, or cell–matrix interactions. Composite
www.sciencedirect.com
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Schematic representation of the material strategies (structural, mechanical, biochemical, and dynamic) utilized to encode tissue-engineering scaffolds

with biological information to mimic the in vivo cellular microenvironment.
materials may be used to overcome these limitations. While

mixing materials from the same class [11] will provide a

degree of modulation, combining materials from different

classes will generate a greater measure of control over its

properties. For instance, bone is composed of collagen (a

polymer) and hydroxyapatite nanocrystals (a ceramic);

hence, polymer/ceramic composites have been widely used

in bone tissue engineering [12]. Hydrogels are another case

in point; they are a cross-linked network of monomers,

oligomers, or polymers that contain 90–95% water in volume

and structurally resemble the ECM [13]. However, they

often lack the mechanical strength needed for certain

tissue engineering applications. In a work by Shin et al.,
gelatin methacrylate hydrogels, which favor cell attach-

ment and spreading but lack strong mechanical proper-

ties were reinforced with carbon nanotubes, which

resulted in a composite with increased compressive

modulus, while material pore size and cell adhesiveness

remained the same [14�]. Furthermore, carbon nanotube-

based composites have been used to direct differen-

tiation of mesenchymal stem cells toward the osteogenic
www.sciencedirect.com 
lineage [15], increase connexin 43 expression of cardiac

constructs [16], and enhance the electrical activity of

neural tissues [17��], given the electrical conduction

properties of carbon nanotubes.

In designing a scaffold, it is ideal that the scaffold, over an

intended period of time, should degrade and be replaced

with naturally deposited ECM and the newly formed

tissue. In this regard, linear aliphatic polyesters such as

poly(lactic acid) and poly(glycolic acid) have been routi-

nely used owing to their biodegradability—given the

susceptibility of their ester bonds to hydrolysis—and

ability to fine-tune their degradation rate. Alternatively,

non-biodegradable materials, such as poly(ethylene gly-

col) (PEG), can be incorporated with matrix metallopro-

teinase (MMP)-sensitive peptides to make them

physiologically degradable. The addition of such peptides

has been shown to directly affect gene expression, as

shown by the increased maturation of cardioprogenitors

via increase in myosin heavy chain-positive cells when

grown on MMP-sensitive gels [18].
Current Opinion in Biotechnology 2012, 23:820–825
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Another important consideration in cellular scaffold fab-

rication is scaffold structure. In the past, emphasis was

placed on macroporous structures to facilitate mass trans-

fer of vital molecules. These scaffolds were often fabri-

cated with microspheres, salt leaches, or gas foams [19].

However, the micron-scale dimensions of these material

structures do not recapitulate the nanometer-scale, fibril-

lar aspect of the structure of ECM. To generate these

nanofibers, techniques such as electrospinning [20], mol-

ecular self-assembly [21,22], and phase separation [23]

have been employed. Hydrogels, discussed previously,

are a class of materials that have proven to be particularly

biomimetic and is now widely used in the biological and

medical fields [24].

Mimicking the physical aspects of the cell’s
microenvironment
The physical aspects of the cell’s microenvironment can

be broken down into substrate mechanics and surface

topography. Depending on their anatomical location,

tissues have a wide range of mechanical properties. For

instance, the elastic moduli of brain (0.5 kPa) is relatively

soft compared to muscles and skin (about 10 kPa) and

precalcified bone (>30 kPa) [25]. Another challenge in

recreating the native cellular environment is that many

tissues are viscoelastic with non-linear, anisotropic, and

heterogeneous mechanical properties [1]. Cellular scaf-

folds used for the repair or replacement of diseased tissues

must have adequate mechanical integrity to withstand

physiological loading, as in the case of engineered blood

vessel, heart, bone, and cartilage constructs. Hence, in

designing a material, the mechanical properties of the

tissue that the material will replace should be carefully

considered, and ideally the two should match. The effects

of substrate stiffness on cell cytoskeletal remodeling, cell

proliferation, and stem cell differentiation [26,27�] are

well known [28]. For instance, fibroblast, endothelial and

epithelial cell growth is enhanced on stiffer substrates,

whereas neurons prefer softer substrates [29]. Employing

this knowledge, Gilbert et al. showed that the skeletal

muscle stem cells grown in vitro on laminin-coated PEG

with elasticity similar to that of muscle had enhanced self-

renewal, as assessed via myogenin transcription factor

expression, and increased in vivo regenerative capacity

when subsequently transplanted in mice [30]. Common

methods of altering the Young’s modulus of polymeric

materials have involved varying the precursor molecular

weight or concentration, or the chemistry or degree of

cross-linking. However, this often leads to a simultaneous

change in the binding sites of the material and the two

parameters cannot be independently assessed. While new

chemistry approaches, such as Diels–Alder [31] or Huis-

gen [32] cycloadditions, have overcome these obstacles,

there is often a compromise between the mechanical

strength of a material and its porous nature. In this regard,

composite materials have overcome these disadvantages

with the use of nanoscale fibers (e.g. non-woven, woven,
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or knitted polymers), tubes (e.g. carbon nanotubes) [33],

wires and belts (e.g. nanotitanates) [34], or particulates

(e.g. gold or silicate) [35] to modulate the bulk mechanical

properties of materials. For instance, in work by Moutos

et al., 3D woven poly(glycolic acid) structures were gener-

ated as reinforcing agents in agarose and fibrin hydrogels

that reproduced the viscoelasticity, tension-compression

non-linearity, and anisotropy of native cartilage tissue,

and maintained the rounded phenotype of chondrocytes

[36].

Another important physical parameter in the cell’s micro-

environment is surface topography. The ECM, through

its 3D structure, presents topographical cues that influ-

ences cell processes such as cell adhesion, morphology,

migration, and differentiation. Microfabrication and

nanofabrication technologies such as photolithography,

soft lithography, and electron beam lithography have

been widely used to create topographies such as grooves,

pillars, and lattices, among other shapes. These topogra-

phies are often used to create anisotropic cell and tissue

constructs or direct specific cellular processes [37] such as

neurite extension. In many tissue types (e.g. myocardium,

bone, and cartilage), the anisotropy of cells and tissues is

intricately connected with the function of that tissue.

Hence, fabrication of topographically containing bioma-

terials has been used in various tissue-engineering appli-

cations. For instance, microfluidic-generated grooved

alginate microfibers were shown to produce a greater

degree of neurite extension and orientation compared

to smooth microfibers [38]. Finally, the fabrication of a

poly(glycerol-sebacate) scaffold with an accordion-shaped

honeycomb structure resulted in anisotropic and tensile

mechanical properties similar to that of the ventricular

myocardium, and resulted in directionally dependent elec-

trical excitation thresholds [39]. While the use of fabricated

topography has provided insight into various cellular pro-

cesses, future work must be directed into uncovering the

mechanism behind such effects.

Biochemical modulation of materials
To generate cell-instructive scaffolds, it is necessary to

encode them with biological information. In vivo, this

information is in the form of signaling molecules or

cytokines, in tethered or freely soluble forms. Currently,

the material strategies for presenting cytokines within

scaffolds include covalent attachment, adsorption, and

use of controlled-release particles [40]. One of the initial

steps after seeding cells on or into a scaffold is integrin-

mediated cell attachment. Hence, covalent attachment of

arginine-glycine-aspartate (RGD) sequences, a ligand for

integrins, to inert synthetic materials such as PEG or

polysaccharides such as hyaluronic acid is a common

method to promote cell adhesion. Covalent attachment

of these peptides and also protein fragments or full length

proteins are possible through targeting the thiol, amino, or

carboxylic groups of these molecules [41]. While covalent
www.sciencedirect.com
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conjugation presents a method that prevents the diffusion

of cytokines out of the scaffold, it is an atypical mode of

molecular presentation. In vivo, growth factors and other

types of signaling molecules are often ECM-bound,

through non-covalent interactions with glycosaminogly-

cans (GAGs) including heparin, heparin-sulfate and chon-

droitin-sulfate. The interaction of GAGs with growth

factors involves their sequestration, protection from

hydrolytic enzymes, and presentation to cell surface

receptors. Therefore, the incorporation of GAGs in scaf-

folds have been employed as a method of presenting and

delivering growth factors [42]. While tethering does

simulate the presentation of some cytokines [43], many

other cytokines are secreted by cells in soluble form for

intercellular communication. Hence, drug release strat-

egies have been employed in tissue engineered scaffolds

to have control over the temporal kinetics of signaling

molecules. These include cytokine encapsulation within

porous scaffolds for burst release, microparticulates and

nanoparticulates [44] synthesized through double emul-

sion techniques for sustained or delayed release [45�], and

on demand release through the use of stimuli-responsive

polymers [46]. For instance, fibroblast growth factor-2

(FGF-2)-containing polyvalent coacervates were used

for the controlled subcutaneous delivery of FGF-2 and

resulted in enhanced angiogenesis as demonstrated by

increased recruitment of endothelial and mural cells and

maturation of blood vessels [47]. The successes of these

drug release strategies are evident from their widespread

use in current clinical trials and therapeutics.

Another aspect of biomaterial chemical modification that

deserves to be mentioned is surface chemistry. The

chemical moieties present at the surface of biomaterials

are critical for cellular functions such as cell adhesion,

migration, proliferation, and differentiation [48]. In

addition, the surface of biomaterials plays a key role in

the integration of tissue engineered constructs and

implants. Using a surface chemistry approach, Wang

et al. functionalized the surface of chondroitin sulfate

scaffold with an adhesive containing methacrylate and

aldehyde groups that promoted tissue integration via the

formation of covalent bonds with the scaffold (through

polymerization reaction) and native cartilage, respect-

ively [49].

Moving from static to dynamic environments
In the in vivo microenvironment, a dynamic interplay

exists between cells and biochemical and physical cues

that currently cannot be controlled in standard in vitro
models. Microfluidics, a field involving the manipulation

of fluids at the micron-scale dimension, has made it

possible to replicate the dynamic in vivo conditions in

in vitro models [50,51]. Commonly used materials in

microfluidic devices include poly(dimethylsiloxane) or

polyesters that may be undesirable given their non-

degradability or lack of robust mechanical properties
www.sciencedirect.com 
[52]. One solution has been through the use of silk fibroin,

amenable to soft lithographic methods, to fabricate bio-

compatible and biodegradable microfluidic devices with

high mechanical modulus and toughness [53].

An advantage central to using microfluidic devices in

tissue engineering is the ability to control the mechanical

properties of the cell’s microenvironment [54]. One way

that this is achieved is through mimicking the stress and

shear forces present in vivo such as those produced by

blood flow [55], heart contractions, and lung movements.

For instance, engineered human microvessels exposed to

high flow resulted in vascular barrier functions that riv-

aled those of in vivo conditions [56]. In another work,

replication of cyclical mechanical stimulation of cardiac

tissues was accomplished with a pulsatile pressure-actu-

ated microfluidic device that induced the preload and

afterload effects on embryonic cardiomyoblasts and

resulted in the establishment of an in vivo phenotype

[57]. Lastly, the breathing movement of the lungs was

replicated by a vacuum-assisted microfluidic device,

cyclically applying mechanical strain to an alveolar-capil-

lary interface that reproduced pulmonary inflammation

responses [58��].

Microfluidics also allows for precise control over the

chemistry and geometry of the environment. Methods

to control cytokine concentration gradients [59], import-

ant in embryonic development and tissue formation [60]

have been developed. For instance, Choi et al. developed

a dual hydrogel membrane within microchannels to pro-

duce stable concentration gradients that could be applied

to chemotaxis studies [61]. Geometric control can be

achieved through adjusting channel dimensions or

employing a layer-by-layer approach. In addition,

recently, self-assembling microfluidic devices with

curved patterns have been developed [62].

Disadvantages to incorporating microfluidics with tissue

engineering include small sample sizes and methods that

are not yet fully developed or scalable. However, the

ability for microfluidics to generate mechanical, chemical,

and geometric constraints similar to those found in phys-

iological conditions are unparalleled by current methods,

thus rendering it valuable to the field of tissue engineer-

ing as demonstrated by microfabricated models of brain,

blood vessels, skeletal muscles, heart, lung, liver,

intestines [63], liver, and tumors [64].

Future outlooks
Advanced material strategies stemming from materials

science, physics, chemistry, and biology have heralded a

new era in the design of tissue engineering scaffolds

whereby the biochemical, mechanical, and structural

details of a cell’s microenvironment or niche can be

replicated to influence cell behaviors such as gene expres-

sion, adhesion, migration, and differentiation. However,
Current Opinion in Biotechnology 2012, 23:820–825
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more work needs to be done to understand the properties

of native tissues, to define proper mechanical character-

ization of biomaterials, and to determine the mechanisms

behind the regenerative processes that are necessary for a

successful tissue replacement. Furthermore, a topic of

importance not discussed here is the biomaterials’ inter-

action with the body’s immune system, which will also

dictate how well an engineered implant can be integrated

within host tissue. Overall, the materials-driven tissue-

engineering discoveries discussed hold great promises in

the near future for the replacement of damaged or dis-

eased tissues.
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