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1011 Advances in the field of tissue engi-
12 neering and regenerative medicine,
13 as indicated by the clinical approval
14 of skin, cartilage, vascular grafts, and blad-
15 der, have shown that simple connective
16 tissues can be produced in vitro and used
17 to treat patients.1�3 Most engineered tis-
18 sues have been generated by seeding cells
19 in porous scaffolds derived fromnatural and
20 synthetic polymers. These scaffolds create a
21 three-dimensional (3D) environment that
22 promotes cellular attachment, migration,
23 proliferation, and differentiation. Despite
24 these advances, a number of technical chal-
25 lenges are currently preventing the devel-
26 opment of more complex organs such as
27 the liver, heart, and kidney.4 These include
28 the inability to reproduce the physical (sub-
29 strate stiffness, architecture) and chemical
30 (cytokines, growth factors, cell�cell, cell�
31 ECM) interactions surrounding the cells in vivo
32 and the lack of a suitable blood vessel supply
33 to ensure cell function in thick tissues.
34 The structure and organization of the
35 extracellular matrix (ECM) components
36 and the interactions between the cellular
37 and soluble factors found in tissue sur-
38 roundings are known to play a significant
39 role in the physiologic function of tissues
40 and organs. Therefore, it is important that
41 scaffolds recreate this microenvironment to
42 engineer tissues with appropriate function.
43 However, many current approaches aiming
44 at tissue and organ regeneration are not
45 designed for optimized performance at
46 such length scales. The challenge is to de-
47 velop technologies that will enable the en-
48 gineering of scalable constructs repro-
49 ducing the cellular microenvironment
50 found in vivo. These approaches, which will

5152535455565758be of use for generating large, functional,
59and vascularized 3D structures, should en-
60able control of the arrangement of micro-
61scopic structures, which is essential to
62achieve the adequate level of functionality
63in engineered tissues. Current strategies are
64moving toward bioinspired approaches to
65produce physiologically relevant tissues
66and organs. Major efforts are directed to-
67ward the generation of increasingly sophis-
68ticated materials that can mimic native
69tissues with respect to both architecture
70and functionality.5

71Microscale technologies are currently stu-
72died as potential tools for addressing this
73issue. The cell-seeded scaffold approach,
74which has led to significant advances over
75the past three decades, is currently shifting
76from empirical approaches to precisely en-
77gineered systems.6 Techniques such as soft
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ABSTRACT Micro- and nanoscale technologies have emerged as powerful tools in the fabrication

of engineered tissues and organs. Here we focus on the application of these techniques to improve

engineered tissue architecture and function using modular and directed self-assembly and highlight

the emergence of this new class of materials for biomedical applications.
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78 lithography, bioprinting, micro-
79 molding, and photolithography
80 have emerged as powerful ap-
81 proaches to generate scaffolds for
82 tissue engineering.7�9 Application
83 of micro- and nanotechnologies to
84 the biomedical field has already led
85 to numerous advances, notably in
86 the pharmaceutical and biotechnol-
87 ogy industries.10,11 Recent break-
88 throughs have resulted in tissue
89 engineering scaffolds that replicate
90 cell-scale complexities into 3D
91 structures.6 These features can be
92 obtained by using various techni-
93 ques ranging from decellularized
94 tissues to the combination of micro-
95 fabrication technologies with modu-
96 lar assembly, which aim to reproduce
97 the cell microenvironment with a
98 high level of fidelity.
99 Modular Assembly for the Engineering
100 of Complex Tissues and Biomimetic Struc-
101 tures. The fabrication of 3D tissues,
102 such as the liver, heart, and kidney,
103 remains a great challenge for tissue
104 engineers since they all represent
105 highly complex organs with specia-
106 lized functions. Comprisingmultiple
107 cell types, an extensive vasculature,
108 and an intricate architecture, they
109 combine the requirement for ade-
110 quate structure, perfusion, and
111 function in order to perform their
112 duty.12,13 Multiple developmental
113 studies have shown that simple
114 physical and chemical cues can give
115 rise to complex outcomes, under-
116 scoring the fact that organ design
117 does not necessarily imply
118 complexity.14 From the geometry
119 of shell formation to the branching
120 architecture and diffusion of mol-
121 ecules into vascular systems, a com-
122 mon observation is that only a
123 handful of simple governing rules
124 regulate the morphogenesis of
125 complicated systems. The field of
126 biomimetics, based on these princi-
127 ples, uses biological developments
128 as a source of technological innova-
129 tion and ideas.14 Self-assembly pro-
130 cesses in nature are triggered by
131 simple guidelines, such as the at-
132 tempt of a system to minimize its
133 surface energy, which result in the
134 aggregation of smaller particles.

135 Therefore, the formation of 3D tis-
136 sues through self-assembly of small
137 subunits is a process that could be
138 used to generate many tissue-like
139 structures. For example, nephrons
140 in the kidney, muscle fibers, liver
141 lobules, and pancreatic islets all re-
142 present repeating units that are as-
143 sembled into coherent 3D structures
144 to enable a desired tissue function.
145 To meet these specifications, bot-
146 tom-up or modular assembly ap-
147 proaches have emerged as means
148 to engineer controlled architectures
149 precisely. These approaches use var-
150 ious physical forces to drive the
151 assembly of microscale objects to
152 generate complex architectures from
153 the directed assembly of tissue build-
154 ing blocks.15�17

155156157158159160161162163164165166167168169170171 Whitesides and co-workers have
172 pioneered the mesoscale assembly
173 of millimeter-scale objects into pre-
174 cisely defined 2D and 3D structures
175 using theminimization of interfacial
176 free energy at the liquid�liquid
177 interface.18,19 Inspired by these
178 findings, we have developed a bot-
179 tom-up approach to direct the as-
180 sembly of cell-laden microgels to
181 form in 3D tissue constructs with
182 tunable microarchitecture and
183 complexity.16 These cell-containing
184 microgels can be engineered to reg-
185 ulate the cellular environment in a
186 specific and “intelligent” fashion.20�23

187 By using microtechnologies, it is
188 possible to create patterns of multi-
189 ple cell types as well as gradients of
190 chemicals and signaling molecules
191 across the hydrogel materials, thus

192enabling regulation of cell behavior
193within the scaffolding material.6,20,24

194Moreover, a range of fabrication
195approaches can also be used to
196control the shape of the resulting
197microgels (Figure 1 F1A) and to gener-
198ate microscale units in a high-
199throughput fashion.25 Therefore,
200the directed assembly of cell-laden
201microscale hydrogels may be useful
202in generating bioengineered func-
203tional tissues with precisely engi-
204neered physical, chemical, and
205biological properties.
206In previous studies, our group
207has shown that the assembly of
208microgel units can be driven by
209the tendency of multiphase liquid
210systems to minimize surface area
211and free energy.16 This thermody-
212namically driven assembly techni-
213que relies on the hypothesis that
214the hydrophilic properties of micro-
215gels, combined with the hydropho-
216bic properties of the medium, can
217be used as the driving force to gen-
218erate 3D structures.26 Mechanical
219stability of these assemblies can be
220controlled by a secondary cross-
221linking reaction using light expo-
222sure. This scalable approach can be
223used to generate biomimetic, 3D
224tissue constructs. To create more
225complex tissues and organs display-
226ing physiologic morphology, mod-
227ular approaches are moving toward
228other approaches to direct the as-
229sembly of these functional microu-
230nits (Figure 1B�D).27 For example,
231lock-and-key-shaped microgels can
232assemble in a more predictable
233manner within a multiphase reactor
234system to generate 3D structures. It
235is envisioned that once the engi-
236neered building blocks are as-
237sembled in an ordered state, they
238will be remodeled by the cells, in-
239tegrate with the host vascula-
240ture, and function as an organ
241substitute.28

242The main limitation of self-assem-
243bly approaches that rely on liquid�
244air and hydrophilic�hydrophobic
245interactions is the restricted num-
246ber of shapes that can be generated
247at the interfaces of the different
248phases. The packing process of
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249 microgels requires hierarchical and
250 organizational driving forces that
251 enable precise microgel placement

252 and assembly, which are essential
253 for recreating biomimetic tissue
254 complexity. To address this issue,

255we have developed a technique
256whereby a solid surface acts as a
257template to direct the assembly

Figure 1. Directed assembly of microgels using a directed approach. (A) Schematic representation of a photolithographic
approach. (B) Directed assembly of lock-and-key-shapedmicrogels stained with FITC-dextran and Nile red (top) or cell-laden
microgels stained with Calcein AM and PKH26 (bottom). Scale bar: 200 μm. (C) Phase contrast and (D) fluorescence images of
centimeter-scale engineered tissues obtained from the interface-directed assembly of cell-ladenmicrogels. Scale bars: 1mm.
(A) Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Reproduced with
permission from ref 45. Copyright 2011 Wiley. (B) Directed assembly of cell-laden microgels for fabrication of 3D tissue
constructs. Reproduced with permission from ref 16. Copyright 2008 National Academy of Sciences, USA. (C,D) Interface-
directed self-assembly of cell-laden microgels. Reproduced with permission from ref 56. Copyright 2010 Wiley.

Figure 2. (A) Schematic diagramof themicromasonry assembly process. (B) Microgels are assembled on a template prior to a
second cross-linking process. This resulted in a 3D structure composed of an assembly of microgels recapitulating the 3D
structure of the template used for fabrication. Scale bar: 5 and 1 mm (magnification). (C) Design image of a microgel arrays
assembled into tubular structures embedded with 3D branching lumens and actual phase image of the microgel assembly
after secondary cross-linking. Scale bar: 500 μm. (D) Phase image of microgel assembly following a sequential and directed
assembly process. Scale bar: 500 μm. (A,B) Micromasonry: construction of 3D structures by microscale self-assembly.
Reproduced with permission from ref 29. Copyright 2010 Wiley. (C,D) Sequential assembly of cell-laden hydrogel constructs
to engineer vascular-like microchannels. Reproduced with permission from ref 45. Copyright 2011 Wiley.
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258 process.29 In this system, the solid
259 surface of the template confines
260 and restricts the microgels into a
261 well-defined structure (Figure 2F2 A,B).
262 Due to the capillary forces of the pre-
263 polymer solution, microgels are able
264 to pack densely around the surface
265 of the template on which they are
266 placed. The current challenge re-
267 garding this approach remains the
268 ability to generate anisotropic 3D
269 structures since the arrangement of
270 units having distinct differences in
271 theirproperties remainsdifficult. Since
272 self-assembly processes are relying on
273 physical and thermodynamic energy
274 balances between states or phases,
275 the optimal assembly of the micro-
276 units will depend on the properties
277 of the material, as well as the nature
278 of the driving forces used to trigger
279 the aggregation of the building
280 blocks. From a tissue engineering
281 perspective, the assembly and
282 packing of the microgels will need
283 to be performed following stringent
284 requirements. The control of chemical
285 and physical interactions between
286 the microgels will be essential for
287 the development of desirable tissue
288 function and stability of self-as-
289 sembled hydrogel structures.30 The
290 development ofmodified interfaces
291 using electrostatic charges or adhe-
292 sion motifs could lead to more effi-
293 cient bondingbetween themicrogels,
294 resulting in increased cohesion and
295 stronger load-bearing capabilities.
296 Consequently, the optimal physio-
297 logic performance of 3D engi-
298 neered tissues will depend on the
299 driving forces and the interfacial
300 phenomena used to build these
301 3D structures because they will en-
302 able the fabrication of essential fea-
303 tures such as the precise branching
304 of perfusable vascular structure fol-
305 lowing microgel assembly.
306 Microengineering of 3D Branched Vas-
307 culature. A key limiting factor in the
308 clinical translation of tissue engi-
309 neering technologies is the inability
310 to generate functional and thick
311 tissues due to the absence of vascular
312 structures in engineered tissues.
313 Recent findings have demonstrated
314 that endothelial cells involved in the

315 angiogenic process not only form
316 passive conduits to deliver nutrients
317 and oxygen but also establish an
318 instructive niche responsible for
319 paracrine signaling stimulating or-
320 gan regeneration, thus highlighting
321 the importance of vascular struc-
322 tures in engineered tissues.31 Pre-
323 vious strategies aiming at the
324 engineering of vasculature have re-
325 lied on the presence of endothelial
326 cells, seeded or cocultured in the
327 scaffold, to induce the release of
328 growth factors and promote angio-
329 genesis. This method was found to
330 be adequate to form capillary-like
331 structures that will ultimately con-
332 nect with the host vasculature once
333 the tissue is implanted in vivo.32�34

334 However, the amount of time re-
335 quired to generate proper vascular-
336 ization and to achieve efficient
337 transport of nutrients considerably
338 reduces the efficiency of producing
339 vascularized tissues and often leads
340 to cell death and tissue necrosis.4

341 Thus, this solution has not been able
342 to generate organ-scale constructs
343 in vitro.

344345346347348349350351352353354355356357358359360361362 Microfabrication technologies—
363 more specifically, microfluidic sys-
364 tems—have emerged as promising
365 approaches to generate physiologi-
366 cally relevant vascular structures
367 into tissue scaffolds.35 These ap-
368 proaches mostly rely on engineered
369 channel networks fabricated in bio-
370 degradable polymers.36�40 However,

371most of the vascularized systems
372are built using top-down appro-
373aches and are generally found in
374planar or stacked 2D structures.41

375Although previous work has shown
376that microscale cell-laden channels
377can be engineered in vitro, it is
378particularly difficult to branchmulti-
379dimensional channels consecu-
380tively in 3D.42 Techniques such as
381direct ink writing and omnidirec-
382tional printing have recently been
383developed to create 3D vascular
384structures.43,44 Despite enormous
385potential, these approaches will
386require further improvement to
387enable the control of the tissue
388structures surrounding the vascular
389channels. However, modular assem-
390bly techniques can be rationally en-
391gineered using cell-laden microgels
392produced by photolithography.
393Photolithography and self-assem-
394bling systems represent novel ap-
395proaches to building biomimetic
396vascular-like structures for tissue
397engineering and in vitro models.
398Our group has developed a simple
399approach to direct the assembly of
400cell-laden microengineered hydro-
401gels embedded with vascular-
402like microchannels having circular
403lumens.45 The sequential assembly
404of hydrophilic hydrogels, performed
405in a biphasic reactor, resulted in a
4063D structure with multilevel inter-
407connected branching vasculature
408(Figure 2C). In addition to the direc-
409ted assembly of the microgels,
410smooth muscle cells and endothe-
411lial cells were encapsulated in the
4123D construct and remained viable
413for an extended period of time.45

414Compared to previous work, this
415sequential assembly technique of
416vascularized units is a step forward
417in our ability to control the relative
418spatial arrangement of the building
419blocks and the architecture of the
4203D assembly.16,17 In a continuation
421of this work, the long-term perfu-
422sion of these capillary networks will
423be investigated. The engineering of
424organs, which requires biological
425complexity including endothelial
426cells to improve vascular activity as
427well as other specialized cell types
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428 required for tissue function and in-
429 tegrity, will benefit from the sequen-
430 tial assembly process enabling the
431 fabrication of 3D constructs con-
432 taining multiple cell types with de-
433 fined architectures and functions.
434 Given these results, it appears that
435 modular tissue engineering may be
436 useful in controlling the microenvir-
437 onment of large and vascularized
438 3D structures, more specifically for
439 building scaffolds requiring cell-
440 scale precision (Figure 2D).
441 Microscale Bioassays and Validation
442 Tools for Engineered Tissue Functionality.
443 It has been shown that individual
444 cell-containing microgels can be
445 fabricated and hierarchically as-
446 sembled into 3D structures, leading
447 to organized and branched archi-
448 tectures,16,45 However, the charac-
449 terization of the physiologic func-
450 tionality of these cell-laden microgels
451 and themacroscale structure result-
452 ing from their assembly still needs
453 to be clearly demonstrated. To gen-
454 erate functional tissues, individual
455 units will have to display appropri-
456 ate properties prior to their incor-
457 poration into the 3D structure. The
458 assembly may also have to demon-
459 strate adequate physiologic func-
460 tionality, as well as perfusion
461 capabilities and structural strength.
462 The development of new classes of
463 biosensors that will assess the func-
464 tionality of both the microgels and
465 their assembly will be of tremen-
466 dous importance in enabling this
467 technology. Microscale technolo-
468 gies have been used to develop
469 numerous tools to investigate
470 cell�cell and cell�microenviron-
471 ment interactions in vitro.6 It has
472 also been shown that microfabri-
473 cated systems can be used as sen-
474 sors inmicrodevices.46 For example,
475 microelectromechanical systems
476 (MEMS) platforms have been incor-
477 porated into a variety of biosensors
478 and analytical tools due to their
479 miniature size and ultrahigh
480 sensitivity.47�50 So far, most of
481 these devices have been designed
482 for in vitro, lab-on-a-chip use. In vivo
483 considerations such as biomecha-
484 nics, distribution and removal of

485 soluble factors, and toxin level de-
486 tection have been the focus of only
487 a few studies using microfabricated
488 implants.46 Engineered tissues in-
489 corporating biologically relevant
490 and implantable microdevices that
491 could monitor and validate tissue
492 function would greatly benefit from
493 the ability to detect important
494 physiological parameters found in

495 vivo. This perspective could also
496 considerably improve the design
497 of engineered tissues through a
498 feedback loop of implementation
499 provided by the readings recorded
500 by these biosensors.
501 Microengineering the Stem-Cell Niche.
502 The engineering of the cell micro-
503 environment has been shown to
504 have a strong influence on the reg-
505 ulation of stem-cell fate.51 The com-
506 bination of microfabrication and
507 stem-cell technologies could be
508 used to dictate cell and tissue be-
509 havior during the fabrication pro-
510 cess in vitro and to trigger or to
511 activate full functionality following
512 implantation in vivo.20 Stem cells
513 represent a potentially unlimited
514 source of cells for tissue engineer-
515 ing and regenerative medicine and
516 can be used to produce multiple
517 engineered tissues using a single
518 cell type.52 Nonetheless, there are
519 significant issues in the control, effi-
520 ciency, and reproducibility of the
521 differentiation process that need
522 to be understood to fully realize
523 the potential of this technology.
524 Most recent approaches to direct
525 stem-cell fate are based on mimick-
526 ing in vivo developmental pro-
527 cesses by using spatial and
528 temporal cues as well as various
529 extrinsic cues such as soluble fac-
530 tors and extracellular matrix and
531 basement membrane constituents.53

532 Therefore, microscale approaches
533 could be used to microengineer
534 artificial stem-cell niches, to study
535 cell�environment interactions in vi-
536 tro, and to dictate cell faith upon
537 implantation in vivo. This could be
538 especially important for organ en-
539 gineering, where the tissue may not
540 only perform a load bearing or bar-
541 rier function but may also perform

542an essential physiologic duty. A
543number of researchers have shown
544that microtechnologies can be used
545to control the differentiation of
546stem cells by mimicking the anisot-
547ropy of the stem-cell niche.54,55 The
548combinationof stem-cell technology
549with modular approaches could
550help to control the restoration of
551tissue morphology and function
552since microtechnologies can be
553used to engineer the bioactivity,
554shape, and localization of the sub-
555strate on which cells attach. Build-
556ing scaffolds and devicesmimicking
557the stem-cell niche and controlling
558the structural anisotropy and biolo-
559gical variations at the microscale
560level could optimize the cell�
561material interactions and therefore
562increase the success rate of their
563utilization for tissue regeneration
564and integration.

565CONCLUSIONS AND PROSPECTS

566Although tissue engineering has
567been described as the next genera-
568tion of available treatment to re-
569place and to regenerate organs,
570this technology has not yet fully
571realized its potential. This can be
572explained by the fact that engi-
573neered tissues previously devel-
574oped were simple and lacked the
575complexity associated with many
576native tissues. Organ function and
577regeneration is highly dependent
578on proper spatial placement and
579arrangement of multiple single
580units, as well as on inductive and
581adequate signaling throughout the
582structure. Recent advances in mi-
583crotechnologies have increased
584our capability to engineer func-
585tional tissues for therapeutic appli-
586cations. The design of newmethods
587that enable the directed self-assem-
588bly of microgels into 3D configura-
589tions composed of microfluidic
590branched structures has shown sig-
591nificant potential for tissue engi-
592neering applications. Moreover,
593the emergence of modular assembly
594is currently enabling thedevelopment
595of a new class of functional and
596instructive engineered tissues. The
597success of these novel techniques
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598 promises to address current chal-
599 lenges, such as nutrient and oxygen
600 transport and vascularization, and
601 will ultimately translate into func-
602 tional and readily available organs
603 for transplantation. In addition, mi-
604 crotechnologies may also lead to
605 the development of new biosensors
606 and biomimetic microdevices. This
607 convergence of multiple research
608 fields, ranging from biomaterials to
609 microfabrication and stem-cell biol-
610 ogy, is highly promising in leading
611 to the generation of engineered
612 biological systems for clinical
613 applications.
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